Датчики для измерения вакуума. Основы вакуумной техники

Понятие о вакууме менялось со временем. В самом начале развития наук об окружающем мире под вакуумом подразумевалась просто пустота, даже само vacuum переводится с латинского как «пустота». Это была скорее философская категория, так как исследовать нечто, хотя бы отдаленно соответствующее представлениям о вакууме, у ученых не было возможности. Современная называет вакуумом состояние квантового поля, при котором его энергетическое состояние находится на самом низком уровне. Это состояние характеризуется в первую очередь тем, что реальные частицы в нем отсутствуют. Техническим вакуумом называют сильно разреженный газ. Это не совсем идеальный вакуум, но дело в том, что в условиях он недостижим. Ведь все материалы пропускают газы в микроскопических объемах, поэтому любой вакуум, заключенный в сосуде, будет иметь помехи. Степень его разреженности измеряют с помощью параметра λ (лямбда), который указывает длину свободного частицы. Это расстояние, которое она может пройти до тех пор, пока столкнется с препятствием в виде другой частицы или стенки сосуда. Высокий вакуум – такой, при котором молекулы газа могу пройти от одной стенки до другой, практически никогда не сталкиваясь друг с другом. Низкий вакуум характеризуется достаточно большим количеством столкновений.Но даже если предположить, что удастся достигнуть идеального , то все равно не стоит забывать о таком факторе, как тепловое излучение – так называемый газ фотонов. Благодаря этому явлению температура тела, помещенного в вакуум, через некоторое время стала бы такой же, как стенки сосуда. Это произойдет именно благодаря движению тепловых фотонов. Физический вакуум – это пространство, в котором масса отсутствует полностью. Но, согласно квантовой теории поля, даже при таком состоянии его нельзя назвать абсолютной пустотой, так как в физическом вакууме непрерывно происходит образование и виртуальных частиц. Их еще называют нулевыми колебаниями поля. Существуют различные теории поля, в соответствии с которыми свойства безмассового пространства могут немного варьироваться. Допускается, что вакуум может быть одного из нескольких видов, каждому из которых присущи свои особенности. Некоторые из тех свойств квантового поля , которые предсказывались учеными-теоретиками, уже были подтверждены экспериментально. Есть среди гипотез и такие, которых сможет подтвердить или опровергнуть фундаментальные теории физики. Например, предположение о том, что возможны так называемые ложные вакуумы (различные вакуумные состояния) очень важно для подтверждения инфляционной теории Большого .

При выборе вакуумного насоса (или компрессора) и оценке его пригодности для использования в той или иной технологии оперируют двумя главными характеристиками:

  • ДАВЛЕНИЕ
  • ПРОИЗВОДИТЕЛЬНОСТЬ

Вакуумный насос или компрессор, который в поиске у потенциального пользователя, должен, прежде всего, обеспечить требуемый уровень давления. Затем ставится задача получить это давление за определенный промежуток времени. Быстрота получения заданного значения давления определяется производительностью (pumping speed) вакуумного насоса. При этом газовые компрессоры нагнетают газы и формируют давления выше атмосферного. Вакуумные насосы генерируют давления ниже атмосферного, т.е. создают разрежение.

В этой статье речь пойдет о низком давлении , т.е. о ВАКУУМЕ, как об основной технической характеристике всех вакуумных насосов. Создание или генерирование устройством вакуума - это динамический процесс понижения атмосферного давления в объеме и во времени. При поисках и выборе вакуумного насоса по уровню вакуума обычно говорят о двух характеристиках вакуумного насоса, связанных с давлением:

  • предельное остаточное давление (или предельный вакуум, ultimate pressure)
  • рабочее давление (или рабочий вакуум, working pressure)

Предельное остаточное давление - это самое хорошее (высокое) значение вакуума, которое позволяет достигнуть конструкция этого вакуумного насоса. Важно понимать, что когда вакуумный насос достигает этого предельного значения вакуума, производительность откачки газов становится равной нулю, т.е. откачка прекращается, и в дальнейшем при работе насоса это значение предельного давления будет поддерживаться как некое достигнутое равновесное состояние системы «насос-откачиваемый объём».

Как правило, значение предельного остаточного давления достигается лишь при работе вакуумного насоса в режиме «сам на себя», т.е. при заглушенном входном патрубке. Это объясняется довольно просто: при подключении к насосу технологических объемов (емкости, трубопроводы, стыки, камеры и др.) всегда существуют течи (негерметичности) или явления газовой десорбции, которые не позволяют достичь в откачиваемом объеме максимальное значение вакуума, который способен создать сам насос.

Рабочее давление - это заданное значение вакуума, которое требуется обеспечить и поддерживать вакуумным насосом в той или иной технологии или техпроцессе.

При выборе вакуумного насоса его предельное остаточное давление должно быть немного лучше чем рабочее. Это как бы обеспечивает некий «запас прочности», т.е. гарантию того, что требуемое в техпроцессе давление будет достигнуто с помощью именно этого вакуумного насоса.

2. Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».

Давление газов в замкнутом объёме - это суммарное усилие, оказываемое ударами (толчками) постоянно движущихся молекул газов в стенки объёма, в результате их постоянного броуновского движения и сталкивания друг с другом и с твёрдыми стенками сосуда.

Основная единица измерения давления в системе СИ - это «Па» (Паскаль):

1 Па = 1 Н / м 2 = 0,01 мбар [ 1 ]

Другие общепринятые единицы измерения давления и их соотношения приведены в Таблице 1:

Таблица 1
Единица измерения давления бар мбар мм.
рт. ст.
м
вод. ст.
Па кПа МПа атм. ат. кгс/см 2 psi
Бар (bar) 1 1000 750 10,2 100 000 100 0,1 0,9869 1,02 1,02 14,5

Атмосферное давление - это давление, которое оказывает масса воздушного столба, как смесь газов, простирающихся на высоту более 1000 км от уровня поверхности земли и океана. При этом надо понимать, что чем выше от поверхности моря находится точка измерения этого атмосферного давления, тем атмосфера менее сконцентрирована, тем смесь газов реже (как бы их масса разбавляется в огромном увеличивающемся с высотой объёме) и, как следствие, давление этой смеси газов падает с подъёмом на высоту (см. Рис. 2). Почему? Просто так издавна утроена планета Земля, вокруг которой существует атмосфера, как газовая аура вокруг шара. Благодаря этой атмосферной ауре живут организмы и проистекают самые жизненные реакции веществ, постоянно потребляющие кислород, и растения, которые этот кислород постоянно вырабатывают и восстанавливают т.н. кислородный атмосферный баланс. Самые яркие примеры - это ветер, горение (как процесс окисления) и дыхание живых организмов, животных, людей.

Кривая изменения атмосферного давления до высоты 12 км над уровнем моря показана на Рис. 3.

Земная атмосфера . Принято считать, что это смесь 14 основных «земных» газов (см. Рис. 1), из которых три составляют львиную долю, в целом более 99% (азот - более 78%, кислород - более 20%, паров воды может быть более 1%).

Земная атмосфера делится на зоны по параметрам давления и температуры: тропосферу, стратосферу, мезосферу и термосферу (см. Рис. 4).

Вакуум - это всякое давление, величина которого ниже атмосферного. Нормальным атмосферным давлением в земных условиях принято считать абсолютное давление атмосферного столба на уровне поверхности мирового океана (моря). Это значение составляет 1013 мбар абс. «абс.» - здесь имеется в виду абсолютное давление, которое равно нулю в том случае, когда в объеме нет ни одной молекулы газов. Т.к. на поверхности земли, в её недрах и в атмосфере всегда есть газообразные вещества и пары жидких веществ, то абсолютный вакуум недостижим в земных условиях. Как бы быстро и хорошо не откачивались объемы современными вакуумными насосами, какими бы герметичными они бы ни были, в микроскопических шероховатостях стенок объемов всегда есть определенное количество молекул газов, которые невозможно удалить из этих микрорельефов. Кроме того, при давлении на стенки сосудов извне всегда есть проскакивающие, как бы просачивающиеся сквозь сито, внутрь молекулы газов, даже сквозь твёрдые кристаллические решетки металлов. В закрытых объёмах всегда есть явления газовой десорбции, т.е. выделения молекул газов со стенок объема вовнутрь, всегда есть микропоры и микротрещины, через которые газы проникают в зоны низкого давления. Всё это не позволяет получить абсолютный вакуум в земных условиях.



Факты : Альпы - это горный массив, пересекающий границы шести стран. В самом их сердце возвышается знаменитая гора Монблан, находящаяся на границе Франции и Италии.

Сами Альпы представляют собой горную гряду, которая тянется по Европе почти 1200 км, в самом широком месте между итальянской Вероной и немецким Гармиш-Партенкирхеном имеет ширину около 260 км, занимая общую площадь в 190 тыс. кв. км. Альпы полностью или частично находятся на территории 8 стран. По доле общей площади государства, приходящейся на Альпы, эти страны располагаются следующим образом: Лихтенштейн (100%), Монако (100%), Австрия (65%), Швейцария (60%), Словения (40%), Италия (17%), Франция (7%), Германия (3%).


Факты : Эверест, она же Джомолунгма - высочайшая вершина в мире, высота этой горы составляет 8848 метров. Эверест расположен в Гималайских горах, которые протягиваются по Тибетскому нагорью и Индо-Гангской равнине на территории нескольких стран: Непала, Индии, Бутана, Китая.

Вершина Эвереста расположена на территории Китая, но сама гора находится на китайско-непальской границе.


Факты : В гражданской и военной авиации очень важно поддерживать атмосферное давление внутри самолета, т.к. при поднятии его на любую высоту от поверхности Земли, давление за бортом падает, а это влечет за собой отток воздуха из салона самолета во внешнюю среду. Чтобы этого не происходило требуется выполнение двух основных условий нормального полета с лётчиком или пассажирами внутри:

Корпус самолета должен быть герметичен (max отсутствие утечек воздуха наружу);
- в корпус необходимо подавать воздух компрессорами под избыточным давлением, чтобы компенсировать всегда существующие утечки и микро утеки воздуха наружу.

Если в военных самолётах можно решить проблему утечек индивидуальными масками пилотов, то в гражданских самолётах, где много пассажиров, создают специальные автоматизированные системы поддержания атмосферного давления.


Рис. 3. График снижения атмосферного давления с высотой над уровнем моря (от 0 до 12) км.

Рис. 4. Диаграмма распределения температуры воздуха в 4-х слоях атмосферного столба:
тропосфера (до 11 км), стратосфера (от 11 до 47 км), мезосфера (от 47 до 80 км), термосфера (свыше 80 км).

3. Градация вакуума по глубине (технические уровни вакуума).

Существует несколько методик по разбивке всей возможной шкалы низкого давления на различные интервалы (отрезки). Самые распространенные - это академическая градация и индустриальная градация.

Академический основан на оценке плотности (степени разрежения) газов по характеру движения их молекул в объёмах путем соизмерения длин пробега молекул между их столкновениями друг с другом и со стенками сосудов, т.е. соизмерения т.н. длин свободного пробега. Чем больше средняя длина свободного пробега молекулы, тем лучше вакуум. Так, например, если молекула газа в объёме успевает пролететь от стенки к стенке не соударяясь с другими молекулами, то это показатель того, что в таком объёме достигнут сверхвысокий вакуум.

Так как мы специализируемся на поставках оборудования для промышленных применений, то рассмотрим в этой статье индустриальный подход к разбивке вакуума на 4 класса (интервала). Этот метод соответствует европейскому стандарту DIN 28400. Классы вакуума приведены в Таблице 2.

Таблица 2
Технические уровни вакуума (classes) Диапазон давлений (pressure range)
ФОРВАКУУМ (rough vacuum) (от 1000 до 1) мбар абс.
СРЕДНИЙ ВАКУУМ (fine vacuum) (от 1 до 10 -3) мбар абс.
ВЫСОКИЙ ВАКУУМ (high vacuum) (от 10 -3 до 10 -7) мбар абс.
СВЕРХВЫСОКИЙ ВАКУУМ (ultrahigh vacuum) (10 -7 и ниже) мбар абс.

4. Базовые законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.

Закон Бойля-Мариотта.

Закон Бойля-Мариотта был установлен английским физиком Робертом Бойлем в 1662 г. и независимо от него французским ученым Эдмом Мариоттом в 1679 г. и звучит так:

Для данной массы газа при неизменной температуре произведение его давления p на объем V есть величина постоянная:

PV = const [ 2 ]

Этот закон также называется ЗАКОНОМ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА.

Как пример:

при постепенном росте объёма определенного количества газа, чтобы сохранить его температуру неизменной, давление газа должно также постепенно снижаться.


Закон Гей-Люссака.

Закон, связывающий объем газа V и его температуру T , был установлен французским ученым Жозефом Гей-Люссаком в 1802 г.

Для данной массы газа при постоянном давлении отношение объёма газа к его температуре есть величина постоянная.

VT = const [ 3 ]

Этот закон еще называют ЗАКОНОМ ИЗОБАРНОГО ПРОЦЕССА.

Как пример:

при постепенном нагреве определенного количества газа, чтобы сохранить давление неизменным, газ должен также постепенно расширяться.


Закон Шарля.

Закон, связывающий давление газа p и его температуру T , установлен Жаком Шарлем в 1787 году.

Для данной массы газа в закрытом герметичном объёме давление газа всегда прямо пропорционально его температуре.

PT = const [ 4 ]

Этот закон еще называют ЗАКОНОМ ИЗОХОРОГО ПРОЦЕССА.

Как пример:

при постепенном нагреве определенного количества газа в закрытом объёме, также постепенно будет расти и его давление.

Уравнение состояния идеального газа.

Уравнение, позволяющее обобщить все три основных газовых закона термодинамики называется уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Оно дает взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа: давления p , объема V , температуры T ,- и имеет вид:

[ 5 ]
p ∗ V = Const = f, где f зависит от рода газа
T
или при записи в другом виде: [ 6 ]
p ∗ V = m ∗ R∗T
μ

p - давление газа, Па (Н/м 2)

V - объём газа, м 3

m - масса газа, кг

μ - молярная масса газа

R = 8,31 Дж/моль ∗ К - универсальная газовая постоянная,

T - температура газа, °К (градусы абсолютной шкалы Кельвина).

Под идеальным газом понимается газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосудов.

Важно понимать, что все газовые законы работают для фиксированной массы (количества) газа.

Законы эти хорошо работают для режимов вакуума и не приемлемы при очень высоких давлениях и температурах.

5. Конструктивные типы вакуумных насосов.

Если говорить об уровне вакуума и его использовании в промышленных и исследовательских целях, то:

В массовой мировой промышленности очень широко применяют форвакуум и средний вакуум;

В более редких высоких технологиях используют форвакуум, средний и высокий вакуум;

В лабораториях и исследованиях можно встретить все классы вакуума, в т.ч. и сверхвысокий.

Для получения всех классов в промышленности применяют различные конструкции вакуумных насосов, основные типы которых приведены в Таблице 3.

Таблица 3

Тип насоса

Конструктивный вид
(схема)

Диапазон рабочих давлений

Мембранный вакуумный насос:

1 ступень откачки
- 2 ступени откачки
- 3 ступени откачки
- 4 ступени откачки

Соответственно работа в диапазоне:

От 100 мбар абс. до атмосферного давления
- от 10 мбар абс. до атмосферного давления
- от 2 мбар абс. до атмосферного давления
- от 0,5 мбар абс. до атмосферного давления

Вихревая воздуходувка

от 600 мбар абс. до атмосферного давления

Двухроторнвя воздуходувка


от 400 мбар абс. до атмосферного давления

Сухой пластинчато-роторный

вакуумный насос

от 150 мбар абс. до атмосферного давления

Водокольцевой вакуумный насос

от 33 мбар абс. до атмосферного давления

Сухой кулачковый вакуумный насос

от 20 мбар абс. до атмосферного давления

Пластинчато-роторный вакуумный насос с рецикркуляционной смазкой

от 0,5 мбар абс. до атмосферного давления

Сухой спиральный вакуумный насос

Сухой винтовой вакуумный насос


от 0,01 мбар абс. до атмосферного давления

2-х ступенчатый пластинчато-роторный вакуумный насос с масляной ванной

от 0,0005 мбар абс. до атмосферного давления

Сухой вакуумный насос Рутса (бустерный)


от 0,001 до 25 мбар абс.

Высоковакуумные насосы:

Турбомолекулярные
- диффузионные паромасляные
- криогенные
- магниторазрядные
- сорбционные, ионные и гетероионные

от 10 -11 до 5 мбар абс.

В этом разделе основной акцент сделан на насосы для получения форвакуума, т.к. это самая востребованная ниша рынка вакуумного оборудования, и не только в России и странах СНГ, а и во всем мире.

Следует также знать, что высоковакуумные насосы не могут работать без вакуумных насосов фор- и среднего вакуума, т.к. они стартуют в работу только с пониженных давлений (как правило, со среднего вакуума) и выхлоп у них должен происходить в зону вакуума, иначе высокий и сверхвысокий вакуум недостижим. Т.о. форвакуумные насосы и насосы среднего вакуума востребованы во всех отраслях промышленности, высокотехнологичных сферах и в научных исследованиях.

Термин "вакуум ", как физическое явление - среда, в которой давление газа ниже атмосферного давления.

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

  • Низкий вакуум (НВ): от 10 5 до 10 2 Па,
  • Средний вакуум (СВ): от 10 2 до 10 -1 Па,
  • Высокий вакуум (ВВ): от 10 -1 до 10 -5 Па,
  • Сверхвысокий вакуум (СВВ): от 10 -5 до 10 -9 Па,
  • Черезвычайно высокий вакуум (ЧВВ):

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

- Низкий вакуум : в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

- Промышленный вакуум : термин “промышленный вакуум” соотвествует уровню вакуума от -20 до -99 кПа. Данный диапазон используется в большинстве применений. Индустриальный вакуум получают с помощью ротационных, жидкостно-кольцевых,поршневых насосов и лопастных вакуумных генераторов по принципу Вентури. Область применения промышленного вакуума включает в себя захват присосками, термоформование, вакуумный зажим, вакуумная упаковка и др.

- Технический вакуум : соответствует уровню вакуума от -99 кПа. Такой уровень вакуума получают при помощи двухуровневых ротационных насосов, эксцентриковых роторных насосов, вакуумных насосов Рутса, турбомолекулярных насосов, диффузионных насосов, криогенных насосов и т.д

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Примеры применения вакуума в промышленности

Вакуумные системы множественного захвата "ОКТОПУС"


Вакуумные присоски - общая информация

Вакуумные присоски незаменимый инструмент для захвата, подъёма и перемещения предметов, листов и различных объектов, которые трудно перемещать обычными системами, из-за их хрупкости или риска деформации.

При правильном применении присоски обеспечивают удобство, экономичность и безопасность работы, что является фундаментальным принципом для идеальной реализации проектов автоматизации на производстве.

Продолжительные исследования и внимание к требованиям наших клиентов, позволили нам производить присоски выдерживающие высокие и низкие температуры, абразивный износ, электростатические разряды, агрессивные среды, а так же не оставляют пятен на поверхности переносимых предметов. Помимо этого, присоски соответствуют стандартам безопасности EEC и пищевым стандартам FDA, BGA, TSCA.

Все присоски изготавливаются из высококачественных компонентов методом вакуумного формования и подвергаются антикоррозионной обработке для долгого срока службы. Независимо от конфигурации, все присоски имеют свою маркировку.

Система множественного захвата Октопус

) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.

Следует различать понятия физического вакуума и технического вакуума .

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума (λ < < l )(5000-10000 молекул на 1см3). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ > > l молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10 -5 Торр)(1000 молекул на 1 см3). Сверхвысокий вакуум соответствует давлению 10 -9 Торр и ниже. К сожалению в земных условиях пока не получен. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 -30 Торр и ниже(1 молекула на 1 см3).Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему . А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

См. также

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Физический вакуум" в других словарях:

    физический вакуум - absoliutusis vakuumas statusas T sritis fizika atitikmenys: angl. absolute vacuum; perfect vacuum; physical vacuum vok. absolutes Vakuum, n; physikalisches Vakuum, n rus. абсолютный вакуум, m; совершенный вакуум, m; физический вакуум, m pranc.… … Fizikos terminų žodynas

    физический вакуум - Состояние системы квантовых полей с наинизшей энергией, определенное перенормированным гамильтонианом теории, включающим физические (наблюдаемые) массы, заряды и поля … Политехнический терминологический толковый словарь

    Ртутный вакуумный барометр Эванджелисты Торричелли учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения … Википедия

    В квантовой теории поля низшее энергетич. состояние квантованных полей, характеризующееся отсутствием к. л. реальных ч ц. Все квант. числа В. ф. (импульс, электрич. заряд и др.) равны нулю. Однако возможность виртуальных процессов в В. ф.… … Физическая энциклопедия

    Вакуум физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. ≈ среда, в… …

    - (от лат. vacuum пустота), состояние газа при давлении меньше атмосферного. Понятие «В.» применяется к газу в замкнутом или откачиваемом сосуде, но нередко распространяется и на газ в свободном пр ве, напр. к космосу. Степень В. определяют,… … Физическая энциклопедия

    I Вакуум (от лат. vacuum пустота) состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве,… … Большая советская энциклопедия

    ВАКУУМ - в житейском понимании пустота, отсутствие реальных частиц. В квантовой механике вводится понятие физического вакуума как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента,… … Философия науки: Словарь основных терминов

    Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

Вакуумом (от латинского vacuum – пустота) называют состояние разряженного газа, когда его давление значительно ниже атмосферного. Количественной характеристикой вакуума служит абсолютное давление.

В технике низких давлений часто используются выражения, подобные следующим: «Давление минус четвертая, откачал до минус пятой». Имеется в виду давление в вакуумной системе, соответственно 10 –4 и 10 –5 мм рт. ст. Характер протекания физико-химических процессов в вакууме зависит от соотношения между числом столкновений молекул остаточного газа со стенками сосуда и числом взаимных столкновений молекул. Это соотношение, вообще говоря, характеризует число молекул в рассматриваемом объеме (вакуумной камере). Численно это соотношение характеризуется отношением средней длины свободного пробега молекул X к характерному (определяющему) линейному размеру s рассматриваемого объема. Это отношение положено в основу разделения областей вакуума на следующие диапазоны: низкий, средний, высокий и сверхвысокий вакуум.

Низкий вакуум – λ << s – соответствующая область давлений от атмосферного до 100 Па (около 1 мм рт. ст.). Средний вакуум – λ ≈ s – соответствующая область давлений от 100 до 0,1 Па. Высокий вакуум – λ >> s – соответствующая область давлений от 0,1 до 10 –5 Па. Сверхвысокий вакуум характеризуется тем, что не происходит заметного изменения свойств поверхности, первоначально свобод­ной от адсорбированного газа, за время, существенное для рассматриваемого процесса. К сверхвысокому вакууму относят область давлений ниже 10 –5 Па.

Степень разрежения, достигаемая в откачиваемых объемах, определяется равновесным давлением, устанавливающимся под действием как минимум трех процессов: 1) откачки газа с помощью насосов (или какого-либо его поглощения); 2) натекания газа через зазоры в рассматриваемом объеме; 3) газовыделения от стенок сосуда (или газопроникновения через них).

Здесь необходимо отметить, что абсолютно герметичных сосу­дов не существует. Немаловажным является понятие «чистоты» вакуума. Дело в том, что при использовании различного рода механических или пароструйных насосов в откачиваемый объем могут попадать молекулы рабочей жидкости насоса, например, масла, и тем самым искажать состав остаточного газа. Кроме того, следует иметь в виду, что скорость откачки различных газов неодинакова, и, начиная откачивать объем, заполненный воздухом, где основные компоненты азот (~ 80 %) и кислород (~ 20 %), при давлении порядка 10 -5 мм рт. ст. в камере получают совершенно иное соотношение остаточных компонентов.

Приборы, предназначенные для измерения давления, значи­тельно ниже атмосферного, называют вакуумметрами. Вакуумметры состоят из преобразователя давления (ПД) и измерительного блока (ИБ). ПД – устройство, присоединяемое к вакуумной камере для непосредственного восприятия давления и преобразования его в другую физическую величину, подлежащую измерению. ИБ – устройство, обеспечивающее требуемый режим работы ПД, усиление и измерение его выходного сигнала.

Вакуумметры классифицируют по принципу действия и методу измерения давления. По методу измерения различают вакуумметры, основанные на абсолютных или косвенных измерениях.

К первой группе относят вакуумметры, непосредственно измеряющие давление как силу, действующую на поверхность чувствительного элемента. Это жидкостные, грузопоршневые и деформационные вакуумметры, характеризующиеся независимостью показаний от рода остаточного газа. Наименьшее давление, которое можно измерить приборами этой группы, составляет 10 –4 – 10 –5 Па.

Ко второй группе относят вакуумметры, принцип действия которых основан на использовании зависимости параметров некоторых физических процессов от давления. Это ионизационные, вязкостные, радиометрические и тепловые вакуумметры.

Показания вакуумметра косвенного метода измерения зависят от рода остаточного газа. Градуировку таких приборов обычно проводят по воздуху или азоту, а для измерения давления других газов используют поправочные коэффициенты. Приборы этой группы позволяют измерять давления до 10 –12 Па. Принцип действия жидкостных вакуумметров (рис. 6.19) основан на уравновешивании измеряемого давления (или разности давлений) давлением столба жидкости. Об измеряемом давлении судят по высоте уравновешивающего столба жидкости.

ПростейшийU -образный вакуумметр представляет собой изогнутую в виде буквы U стеклянную трубку постоянного сечения, заполненную жидкостью. Внутренний диаметр трубки во избежание погрешностей, вызванных действием капиллярных сил, должен быть не менее 7 мм. Один конец трубки соединяют с вакуумной системой (Р Х ), а другой может быть открытым или закрытым. Давление в закрытом колене должно быть значительно меньше измеряемого. Измеряемое давление рассчитывают по формулам:

с

Рис. 6.19. Принцип действия

жидкостного вакуумметра

открытым коленом–

; (6.6)

с закрытым коленом –

, (6.7)

где Р А – атмосферное давление;
– плотность жидкости; g – ускорение свободного падения; Δ h – разность уровней жидкости.

Диапазон измеряемых значений давления зависит от жидкости, геометрических размеров прибора и способа измерения разности уровней, для чего используют различные методы – от обычной линейки с миллиметровыми делениями до интерференционных методов. В последнем случае точность отсчета уровней составляет ~10 –5 мм, а предел измерения давления –10 –3 Па.

В качестве рабочих жидкостей выбирают жидкости с малым давлением насыщенного пара и малой способностью к растворению газов. Для измерения давления, близкого к атмосферному, необходимо выбирать жидкость с большой плотностью (обычно ртуть), а для измерения малых давлений – жидкости с минимальной плотностью (часто используют вакуумное масло).

В деформационных вакуумметрах давление определяют по деформации упругого элемента, происходящей под действием разности давлений. Такие вакуумметры различают по типу чувствительного элемента и способу измерения деформации.

По типу чувствительного элемента – трубчатые, сильфонные, мембранные. В трубчатых и сильфонных вакуумметрах подвижную часть чувствительного элемента через систему зубчатых передач соединяют со стрелкой, по отклонению которой судят о давлении.

В мембранных вакуумметрах для определения прогиба мембраны используют оптические, но чаще электрические методы. В последнем случае прогиб измеряют с помощью тензопреобразователей либо применяют емкостной метод, при котором мембрана совместно с неподвижным электродом образует конденсатор, емкость которого меняется при изменении давления. При незначительных прогибах относительное изменение емкости прямо пропорционально изменению давления. Мембранные преобразователи позволяют измерять давление от атмосферного до 10 –4 Па (о чем уже упоминалось при описании емкостных датчиков).