Возникновение и основные этапы развития астрономии. Краткая история развития астрономии

Астрономия- древнейшая из наук. Археологами установлено, что человек владел начальными астрономическими знаниями уже 20 тыс. лет назад в эпоху каменного века.

Развитие астрономии происходило по мере накопления данных наблюдений, их систематизации.

Астрономия особенно бурно развивалась в те эпохи, когда в обществе возникала острая практическая потребность в её результатах (предсказание наступление сезонов года, времяисчисление, ориентировка на суше и море и т.п.

Доисторический этап ¾ »от 25 тыс.лет до н.э.- до 4 тыс. до н.э.(наскальные рисунки, природные обсерватории и т.д.).

Древний этап ¾ условно можно считать от 4.000лет до н.э.-1000 до н.э.:

¾ около 4.тыс. лет до н.э. астрономические памятники древних майя, каменная обсерватория Стоунхендж (Англия);

¾ около 3000 лет до н.э. ориентировка пирамид, первые астрономические записи в Египте (рис. 1.1), Вавилоне, Китае;

¾ около 2500лет до н.э. установление египетского солнечного календаря;

¾ около 2000 лет до н.э. создание 1-ой карты неба (Китай);

¾ около 1100 лет до н.э. определение наклона эклиптики к экватору;

Античный этап ¾ идеи о шарообразности Земли (Пифагор, 535 г. до н.э.);

¾ предсказание Фалесом Милетским солнечного затмения (585 г. до н.э.).

¾ установление 19-летнего цикла лунных фаз (цикл Метона, 433 г. до н.э);

¾ идеи о вращении Земли вокруг оси (Гераклит Понтийский, 4 век до н.э);

¾ идея концентрических кругов (Евдокс), трактат «О Небе» Аристотель (доказательство шарообразности Земли и планет) составление первого каталога звёзд 800 звёзд, Китай (4 век до н.э.);

¾ начало систематических определений положений звёзд греческими астрономами, развитие теории системы мира (3 век до н.э.) (рис.1.2);

¾ открытие прецессии, первые таблицы движения Солнца и Луны, звездный каталог 850 звезд (Гиппарах, (2 Век до н.э);¾ идея о движении Земли вокруг Солнца и определение размеров Земли (Аристарх Самосский, Эратосфен 3-2 в. до н.э.);

¾ введение в римской империи Юлианского календаря (46 г. до н.э);

¾ Клавдий Птолемей – «Синтаксис»(Альмогест)-энциклопедия античной астрономии, теория движения, планетные таблицы (140 г. н.э).

Арабский период . После падения античных государств в Европе античные научные традиции (в том числе и астрономии) продолжили развитие в арабском халифате, а также в Индии и Китае:

¾ 813г. Основание в Багдаде астрономической школы (дом мудрости);

¾ 827г. определение размеров земного шара по градусным измерениям между Тигром и Евфратом;

¾ 829г. основание Багдадской обсерватории;

¾Х в. открытие лунного неравенства (Абу-ль-Вафа, Багдад);

¾ каталог 1029 звёзд, уточнение наклона эклиптики к экватору, определение длинны 1° меридиана (1031г, Ал-Бируни);

¾ многочисленные работы по астрономии до конца 15 века (календарь Омара Хайяма, «Ильханские таблицы» движения Солнца и планет(Насирэддин Тусси, Азербайджан), работы Улугбека).

Европейское возрождение . В конце 15 века начинается возрождение астрономических знания в Европе, которое привело к первой революции в астрономии. Эта революция в астрономии была вызвана требованиями практики – начиналась эпоха великих географических открытий. Дальние плавания требовали точных методов определения координат. Система Птолемея не могла обеспечить возросших потребностей. Страны, которые первыми обратили внимание на развитие астрономических исследований, добивались наибольших успехов в открытии и освоении новых земель. Так в Португалии, еще в 14 веке принц Генрих основал обсерваторию для обеспечения потребностей мореплавания, и хотя он не принимал участия в плаваниях, в истории он известен под именем Генрих- Мореплаватель, а Португалия первая из Европейских стран начала захват и эксплуатацию новых территорий.

Важнейшие достижения европейской астрономии XV ¾ XVI веков это планетные таблицы (Региомонтан из Нюрнберга, 1474г.), работы Н.Коперника, которые произвели первую революцию в Астрономии (1515-1540 гг.), а также наблюдения датского астронома Тихо Браге в обсерватории Ураниборг на острове Вэн (самые точные в дотелескопическую эпоху). В 1609- 1618 гг. Кеплер на основе этих наблюдений планеты Марс открыл три закона движения планет, а в 1687г. Ньютон опубликовал закон всемирного тяготения , объясняющий причины движения планет.

В начале 17 века (Липперсгей, Галилей, 1608 г) был создан оптический телескоп, многократно раздвинувший горизонт познания человечества о мире. Соединение достижений теории и практики позволило в свою очередь сделать ряд замечательных открытий: определяется параллакс Солнца (1671), что позволило с высокой точностью определить астрономическую единицу и определить скорость света, открываются тонкие движения оси Земли, собственные движения звёзд, законы движения Луны, создаётся небесная механика, определяются массы планет.

В начале ХIХ века (1.01.1801г.) Пиацци открывает первую малую планету (астероид) Цереру, а затем в 1802 и в 1804 годах были открыты Паллада и Юнона.

В 1806 ¾ 1817 гг И.Фраунтгофер (Германия) создаёт основы спектрального анализа, измеряет длинны волн солнечного спектра и линий поглощения, заложив таким образом основы астрофизики.

В 1845 г. И.Физо и Ж.Фуко (Франция) получили первые фотографии Солнца. В 1845 ¾ 1850 гг лорд Росс (Ирландия) открыл спиральную структуру некоторых туманностей, а в 1846 г. И.Галле (Германия) по вычислениям У.Леверье (Франция) открыл планету Нептун, что явилось триумфом небесной механики. Развитие науки в ХIХ-ом веке (прежде всего физики и химии), появление новых технологий дал толчок к развитию астрофизики. Внедрение в астрономию фотографии позволило получить фотоснимки солнечной короны и поверхности Луны, начать исследования спектров звёзд, туманностей, планет. Прогресс в оптике и телескопостроении позволил открыть спутники Марса, описать поверхность Марса по наблюдениям его в противостоянии (Д. Скиапарелли), а повышение точности астрометрических наблюдений позволило измерить годичный параллакс звёзд (Струве, Бессель, 1838г) открыть движение земных полюсов.

Астрономия ХХ века. В начале ХХ века К.Э.Циолковский издаёт первое научное сочинение по космонавтике ¾ «Исследование мировых пространств реактивными приборами».

В 1905 г. А.Эйнштейн создаёт специальную теорию относительности , а в 1907 ¾ 1916 годах общую теорию относительности , что позволило объяснить имеющиеся противоречия между существовавшей физической теорией и практикой, дало импульс для разгадки тайны энергии звёзд, стимулировало развитие космологических теорий («нестационарная вселенная» А.А.Фридман, РСФСР). В 1923 г Э.Хаббл доказал существование других звёздных систем ¾ галактик , а в 1929 г. он же открыл закон «красного смещения» в спектрах галактик.

Дальнейшее развитие астрономии в ХХ веке шло как по пути увеличения мощности оптических телескопов (в 1918 г. установлен 2,5 – метровый рефлектор в обсерватории Маунт-Вилсон, а в 1947 г.там же вступил в строй 5-и метровый рефлектор) так и по освоению других участков спектра электромагнитных волн.

Радиоастрономия возникла в 30-х годах 20-го века вместе с появлением первых радиотелескопов. В 1933 Карл Янский из Bell Labs обнаружил радиоволны, идущие из центра галактики. Вдохновившись его работами Гроут Ребер в 1937 году сконструировал первый параболический радиотелескоп.

В 1948 г. запуски ракет в высокие слои атмосферы (США) позволили обнаружить рентгеновское излучение солнечной короны. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Астрофизика стала ведущим разделом астрономии, она получила особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни.

В 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению новых разделов астрофизики. В 1957 в СССР запущен первый искусственный спутник Земли, что ознаменовало начало космической эры для человечества. Космические аппараты позволили выводить за пределы земной атмосферы инфракрасные, рентгеновские и гамма-телескопы). Первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), - эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта (Луна-16, СССР, 1970 г.), посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Освоение астрономией широкого спектра электромагнитных волн позволило человечеству многократно увеличить свои знания о Вселенной. В тоже время новые возможности поставили перед наукой новые задачи – темная материя, тёмная энергия ждут рационального объяснения.

Более подробно о наиболее важных достижениях современной астрономии рассказано в соответствующих разделах курса лекций.

Связь астрономии с другими науками, практическое значение астрономии

Исследования процессов, происходящих на различных небесных телах, позволяют астрономам изучать материю в таких ее состояниях, какие еще не достигнуты в земных лабораторных условиях. Поэтому астрономия, и в частности астрофизика, тесно связанная с физикой, химией, математикой, способствует развитию последних, а они, как известно, являются основой всей современной техники. Достаточно сказать, что вопрос о роли внутриатомной энергии впервые был поставлен астрофизиками, а величайшее достижение современной техники - запуск искусственных спутников Земли, орбитальных и межпланетных космических станций невозможен без астрономических знаний.

Исключительно важна роль астрономии в формировании правильного материалистического мировоззрения. Астрономия, изучая небесные явления, исследуя природу, строение и развитие небесных тел, доказывает материальность Вселенной, ее естественное, закономерное развитие во времени и пространстве без вмешательства каких бы то ни было сверхъестественных сил.

Астрономия с древнейших времён служила людям для определения времени и местоположения на поверхности Земли, т.е для навигации и геодезии. С запуском первого искусственного спутника Земли в нашей стране в 1957 г. началась эра космических исследований. Изучение Земли из космоса позволило ещё шире поставить астрономию на службу наук о Земле (геологии, геохимии, геофизики и т.п.).

Особое значение астрономия приобретает в настоящее время, решая задачу предупреждения о столкновении Земли с астероидом или кометой. То, что эта угроза не плод воображения фантастов говорят последствия падения т.н. «тунгусского метеорита». В результате падения, как считает большинство исследователей ядра небольшой кометы, была уничтожена тайга на огромной территории (площадь вывала леса превысила 2 тыс. кв. км.). как показывают расчеты, столкновение с Землёй астероида диаметром 100 м может происходить раз в 1000 лет. При падении тела таких размеров по усреднённым подсчётам выделится энергия » 5×10 17 дж, что примерно равно взрыву самой мощной термоядерной бомбы и лишь в 20 раз меньше чем суммарная мощность всех землетрясений на Земле за год. Падение такого тела может привести к локальной катастрофе, которая может быть усугублена аварией на потенциально опасных объектах – атомных или гидроэлектростанциях, химических производствах, а также спровоцировать начало военных действий с применением оружия массового уничтожения. Первой задачей по предотвращению таких катастроф является обнаружение таких тел за годы до столкновения. Роль астрономических наблюдений в решении этой задачи является главной. Более подробно об астероидно-кометной опасности и роли астрономии в её предотвращении сказано в разделе 11.

Астрономия продолжает оставаться наблюдательной наукой, но недалек тот день, когда астрономические наблюдения будут производиться не только с межпланетных станций и орбитальных обсерваторий, но и с поверхности Луны или других планет.

Литература к разделу

  1. Кононович Э.В., Мороз В.И. Общий курс астрономии: учебное пособие/Под ред. В.В. Иванова.- 2-е изд.- М.: Эдиториал УРСС, 2004-544с.
  2. Куликовский П.Г. Справочник любителя астрономии. Изд. 5-е – М.:Эдиториал УРСС, 2002. -688с.
  3. Ганагина И.Г. Астрономия. – Метод. указ. -Новосибирск: СГГА. – 2002.
  4. Климишин И.А. Астрономия наших дней. 2-е издание, “Наука”, 1980-456с.
  5. Бронштэн В.А. Тунгусский метеорит. М.: А.Д. Сельянов, 2000-311с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Основная часть

1.1 Происхождение науки

Заключение

Список литературы

Введение

Слово «астрономия» происходит от двух греческих слов: «астрон» -- звезда, светило и «номос»-- закон.

Астрономия -- наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем (6,с.22). Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей). Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла наука о небесных телах -- астрономия.

1. Основная часть

1.1 Происхождение науки

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI-III тысячелетия до н. э.). Астрономия изучает движение, строение, происхождение и развитие небесных тел и их систем. Человека всегда интересовал вопрос о том, как устроен окружающий мир, и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые - космологические мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе. Оказалось, что периодическим изменениям в земной природе сопутствуют изменения вида звездного неба и видимого движения Солнца. Высчитать наступление определенного времени года было необходимо для того, чтобы в срок провести те или иные сельскохозяйственные работы: посев, полив, уборку урожая(1,с.25).

Но это можно было сделать лишь при использовании календаря, составленного по многолетним наблюдениям положения и движения Солнца и Луны. Так необходимость регулярных наблюдений за небесными светилами была обусловлена практическими потребностями счета времени. Строгая периодичность, свойственная движению небесных светил, лежит в основе основных единиц счета времени, которые используются до сих пор, - сутки, месяц, год. Простое созерцание происходящих явлений и их наивное толкование постепенно сменялись попытками научного объяснения причин наблюдаемых явлений.

Все повторяется в небе над нами: каждую ночь восходят и заходят звезды, меняются лунные фазы, Солнце находит свой путь между звезд. Скорее всего, именно эти закономерности были открыты первыми астрономами, сидевшими у первобытного костра. Движение Луны (точнее, периодичность смены лунных фаз) было положено в основу первого лунного календаря, затем было открыто движение Солнца по зодиаку, и появился солнечный год. В это же время достигла расцвета и «небесная» мифология: первобытные люди обожествляли Солнце, Луну и другие светила, совершали различные обряды, чтобы задобрить небесных богов.

За несколько тысяч лет до нашей эры в долинах крупных рек (Нил, Тигр и Евфрат, Инд и Ганг, Янцзы и Хуанхэ) осели земледельцы. Календарь, составлявшийся жрецами Солнца и Луны, стал играть важнейшее значение в их жизни. Наблюдения за светилами жрецы проводили в древних обсерваториях, одновременно бывших и храмами. Их изучает археоастрономия. Археологи нашли довольно много подобных обсерваторий. Простейшие из них - мегалиты - представляли собой один (менгиры) или несколько (дольмены, кромлехи) камней, расположенных в строгом порядке друг относительно друга. Мегалиты отмечали места восхода и захода светил в определенное время года. Раньше считалось, что их возвели древние кельты, но сейчас доказано, что мегалиты появились в Европе намного раньше индоарийских племен (древнейший из них - Нью-Грейндж - датируется 3000 г. до н.э.), а друиды только поклонялись этим «волшебным» сооружениям (2, с.144).

Одним из самых известных сооружений древности является Стоунхендж, расположенный в Южной Англии. По легенде, его за одну ночь воздвиг волшебник Мерлин. Обсерватория представляет собой 30 вкопанных камней высотой более 5 м с положенными сверху плитами, составлявшие кольцо диаметром почти 30 м. Внутри него располагались еще несколько камней, вокруг сооружения были кольца лунок. Сейчас ученые полагают, что Стоунхендж строился в несколько этапов между 1900 и 1600 гг. до н.э. Его основная функция - наблюдение Солнца и Луны, определение дней зимнего и летнего солнцестояний, предсказание лунных и солнечных затмений. В трех километрах от Стоунхенджа были найдены остатки древней постройки, напоминавшей его по своей планировке, но выполненной из дерева. Считают, что Вудхендж был гигантским макетом, опираясь на который строители сумели построить Стоунхендж.

1.2 Развитие астрономии Византии в Средние века

В Византии в XI в. астрология по-прежнему занимала важное место в системе естественнонаучных знаний. Но при этом отношение к ней в византийском обществе было двойственным. Церковь была враждебно настроена к астрологии, усматривая в признании зависимости поступков людей от положения и движения небесных светил противоречие с христианским вероучением о самоопределении души, свободе воли и воздаянии.

Иным было отношение к астрологии византийских монархов. При их дворах бывали астрологи, к которым императоры обращались за советом во всех важных случаях и которые должны были определять исход того или иного предприятия. Михаил V Калафат (1041 - 1042), задумав удалить из дворца усыновившую его императрицу Зою, обратился к астрологам, чтобы выяснить, благоприятствует ли время задуманному мероприятию. Глубокий пиетет к астрологам питал Константин IX Мономах (1042 - 1055). Он и сам следил за движением звёзд и пытался определять по ним свою судьбу. К астрологам в критических обстоятельствах обращался Михаил VII (1071 - 1078) для выяснения исхода событий и внимательно выслушивал их предсказания.

Алексей I Комнин (1081 - 1118), мало внимания обращавший на небесные предзнаменования и объяснявший их естественными причинами, относился враждебно к астрологам и даже изгнал их из столицы. Однако, когда на небе появилась огромная комета, которую в народе считали вестником каких-то новых, необычайных событий, он был вынужден обратиться за разъяснениями подобного явления к сведущим людям, а именно к эпарху города Василию, довольно хорошо разбиравшемуся в учении астрологов. С огромным доверием относились к астрологии и василевсы из династии Ангелов. По рассказу Никиты Хониата, Алексей III Ангел (1195 - 1203) при неблагоприятном положении звёзд даже отказывался от переезда из Большого дворца во Влахернский. Как подчёркивает историк, византийские императоры и шага не делали, не посоветовавшись с астрологами о положении звёзд.

В позднее Средневековье астрология в Византии в целом не занимала такого места, как на Западе (где она в это время стала активно развиваться). Однако среди учёной части населения астрономия и астрология вновь начинают вызывать большой интерес. Своим расцветом в палеологовское время наука о небе обязана Феодору Метохиту, находившемуся в центре политической и духовной жизни в период правления Андроника II (1263 - 1267).

Метохит возродил эту некогда процветавшую, но теперь почти забытую науку. В научной среде начали разгораться споры о том, какая из наук более значима - математика (бывшая до того времени наиболее популярным предметом квадривиума) или астрономия с астрологией, и эти споры решались в пользу "науки о звёздах". Занятия Метохита были продолжены его учеником Никифором Григорой (1295 - 1360).

В эпоху Великих Комнинов (1204 - 1461) центром изучения естественных наук становится Трапезунд. Во многом это заслуга Григория Хиониада (сер. XIII в. - ок. 1330).Константинопольский врач Григорий Хиониад прибыл в Трапезунд ранее 1295 г. и добился от императора Иоанна II (1280 - 1297) большой денежной субсидии для поездки в Персию, где успешно развивалась астрономия.

Пробыв в Иране несколько лет между 1295 и 1301 гг., Хиониад привёз в Трапезунд большое число книг по астрономии и астрологии, которые затем перевёл на греческий язык и снабдил комментариями, как письменными, так и устными, наставляя учеников. Хиониад создал школы в Константинополе и Трапезунде, существенно обогатил византийскую астрономию в целом. В Трапезунде его школа продолжала существовать и позднее. В 1320-х - 30-х гг. клирик Мануил вёл занятия по персидским книгам и руководствам, привезённым Хиониадом.

Продолжалось и составление астрологических таблиц. Вновь отметим, что астрономией и астрологией занимались люди, практиковавшие врачевание и ради врачевания; такими были Хиониад, Андрей Ливадин, Георгий Хрисококк. Результатом деятельности этих учёных стало то, что в 1330-е - 40-е гг. интерес к гороскопной астрологии вновь возрос - как в Византии, так и в Трапезундской империи.

В последние десятилетия XIV в. разворачивалась деятельность астронома, астролога и врача Иоанна Абрамия. В 1370-х гг. он был астрологическим советником Андроника IV (в частности, составил сохранившийся до наших дней гороскоп вступления Андроника IV в Константинополь и свержения с престола его отца, императора Иоанна V, 12 августа 1376 г.).

Абрамий стал основателем астрологической школы, которая процветала в 1370-х - 1400-х гг. В этой школе был большой интерес к теории затмений, на что указывают сохранившиеся во множестве соответствующие расчёты. Абрамий и его коллеги копировали и переводили астрологические и астрономические сочинения, и эта их деятельность имеет важное значение, поскольку благодаря ей сохранился ряд редких работ. В начале XV в. Абрамий попытался откорректировать астрономические параметры Птолемея на базе собственных наблюдений и знания исламских материалов, переведённых на греческий язык Григорием Хиониадом между 1298 и 1302 г. Среди представителей школы Абрамия следует выделить Элевтерия Элея (известного также под псевдонимом Палхус) и его ученика Дионисия. Их занятия были продолжены уже ближе к середине XV в. Иоанном Хортасменом и кардиналом Исидором Киевским. Однако дни как Византии в целом, так и византийской астрологии были сочтены: в 1453 г. Константинополь был взят штурмом, после чего все византийские территории в Малой Азии и на Балканах оказались под властью Турции.

1.3 Развитие астрономии в Западной Европе

астрономия небесный тело наука

С VIII в. над Испанией и Сицилией обрели владычество арабы, у которых, астрология активно развивалась. Постепенно идеи исламской науки начали проникать в европейские образованные круги. Большой интерес к астрологии и астрономии, характерный для европейцев этой эпохи, стал причиной того, что когда западные эрудиты начали развивать контакты с арабами, астрологические тексты были среди первых переведённых работ. Ряд латинских сочинений X в. уже содержит арабские термины и концепции. Однако действительно активное изучение арабских работ началось лишь в XII в.

Характерно, что период, когда арабские научные тексты переводились на греческий язык, длился с IX по XIV в., а на латинский язык арабские сочинения переводились в основном с XII по XIII в. Однако за эти два века было сделано гораздо больше латинских переводов, чем греческих - за шесть веков. Во многом это объясняется тем, что греки имели в своём распоряжении обширные научные источники (прежде всего, античные), не уступающие арабским, тогда как на латинском Западе научные знания были гораздо скуднее. Поэтому, когда появилась возможность научных контактов с исламским миром, европейские переводчики воспользовались ею весьма активно. Выдающимися переводчиками, познакомившими латинский Запад со многими работами греческих, арабских и еврейских астрологов были Аделярд из Бата (ок. 1080 - 1152) , Платон Тиволийский (1-я пол. XII в.), Хуго Санталийский (сер. XII в.), Роджер из Херефорда (2-я пол. XII в.), Михаэль Скот (ум. ок. 1235). При этом они и сами были прекрасными астрологами.

Особо важную роль в распространении астрологический и астрономических знаний сыграл Альфонс X Мудрый (1221 - 1284), король Кастилии и Леона с 1252 г., а с 1257 г. также король Германии. Он покровительствовал наукам и литературе, сам занимался астрологией и астрономией (за что и был прозван Мудрым), заботился о переводе всех доступных ему исламских астрологических трактатов на латинский язык. Кроме того, по инициативе Альфонса Мудрого в 1248 г. в Толедо испанскими, арабскими и еврейскими учёными были разработаны новые таблицы движения планет. Они были изданы в 1252 г. и получили название "Альфонсинских таблиц". Астрологи Европы использовали их для составления гороскопов на протяжении нескольких веков, вплоть до Кеплера.

1.4 Развитие астрономии в Восточной Европе

В обсуждаемый период астрология и астрономия получили распространение и в Восточной Европе. Хотя естественные науки в целом и "науки о звёздах" в частности не приветствовались православной церковью, данные дисциплины были известны и на Руси. К примеру, сохранились сведения, что астрология входила в квадривиум наук, изучавшихся в школах повышенного типа в Полоцком княжестве.

Центром астрологических и астрономических знаний в Восточной Европе с XV в. стала Польша. Главной "кузницей" астрологических кадров была Краковская академия, в которой существовала самостоятельная кафедра астрологии. Первый курс астрологии был здесь прочитан в 1423 г. Хенриком Чехом, который славился точностью своих прогнозов. В последующие полтора столетия в Краковской академии работала целая плеяда известных астрологов:

Мартин из Журавицы (ок. 1422 - ок. 1459), математик и доктор медицины, получивший за удачные исцеления прозвище "короля в медицине", он был автором первого в Польше прогностика (сборника астрологических предсказаний) на 1451 г.;его ученик Мартин Былица (1433 - 1494), преподававший астрологию и астрономию в университетах Италии и Венгрии и составивший вместе с Региомонтаном астрологические таблицы;

Пётр Гашовец (ок. 1430 - 1474), доктор медицины, ректор Краковской академии, придворный астролог Казимира IV;

Войцех Брудзевски (2-я пол. XV в.), магистр астрологии, автор ряда альманахов и прогнозов, опубликованных в 1480-х гг.;

Михал из Вроцлава (ум. ок. 1534), философ (представитель среднего аристотелизма), теолог, математик, автор первых печатных прогностиков.

В Краковской академии также получил образование Георгий Дрогобычский (Юрий из России; ок. 1450 - 1494) - первый отечественный доктор медицины и философии и первый восточнославянский астролог, получивший европейскую известность. В 1478 - 1482 гг. он читал лекции по астрологии и медицине в Болонском университете, а на 1481 - 1482 учебный год был избран ректором этого университета благодаря своему высокому престижу в науке о звёздах. Параллельно он практиковал как астролог. С 1487 г. Юрий из России преподавал астрономию, астрологию и медицину в Кракове. Среди его учеников в астрономии был Николай Коперник. Георгий Дрогобычский был признан одним из лучших врачей своего времени, и в 1492 г. получил должность "королевского лекаря" при Казимире Ягеллончике. Он был автором ряда трактатов по мунданной астрологии, посвящённых преимущественно предсказанию по затмениям. Интересно, что именно в астрологическом сочинении Георгия из Дрогобыча "Прогностическое суждение...", изданном в Риме в 1483 г., впервые в истории печати упомянуты Москва, Вильно (Вильнюс), Кафа (Феодосия), а также родные города автора - Львов и Дрогобыч.

Заключение

Трудно точно сказать, когда именно зародилась астрономия и астрология: до нас почти не дошли сведения, относящиеся к доисторическим временам. В ту отдаленную эпоху, когда люди были совершенно бессильны перед природой, возникла вера в могущественные силы, которые будто бы создали мир и управляют им, на протяжении многих веков обожествлялась Луна, Солнце, планеты. Об этом мы узнаем из мифов всех народов мира. Первые представления о мироздании были очень наивными, они тесно переплетались с религиозными верованиями, в основу которых было положено разделение мира на две части - земную и небесную. Думали, что существует "твердь небесная", к которой прикреплены звезды, а Землю принимали за неподвижный центр мироздания.

Астрология и астрономия одновременно выполняли две практически не связанные между собой, но, тем не менее, имеющие одну точку приложения, задачи: изучали различные характеристики небесных тел (размер, положение относительно Земли, скорость движения, исходящий от неё свет, цвет и прочие) и как это проявляется. Ими двигало не любопытство больше узнать о Марсе или Венере как таковых, а желание понять как они влияют на отдельного человека и Землю в целом.

Сегодня в лабораториях ученых все чаще наблюдаются феномены, которые нельзя интерпретировать только в рамках материалистической доктрины. Если астрономия -- овеществленная поэзия Космоса, то астрология -- его одухотворенная компонента. Для приобретения имеющегося объема астрономических и астрологических знаний человечество затратило огромные интеллектуальные усилия.

Список литературы

1. Астрономия: Учебник для 11 кл.сред.шк. - М: Просвещение,1990.

2. Бакулин. П.И. Курс общей астрономии. - М.: Академия, 2000.

3. Берри А. «Краткая история астрономии» Пер. с англ. Займовского С.Г. ОГИЗ, М-Л., 1946. - 363 с

4. Еремеева. А.И. Астрологическая картина мира и ее творцы. - М.: Наука, 1984

5. Куталев Д. «Астрология в ХI-XVвв»

6. Черепащук А. М., Чернин А. Д. Вселенная, жизнь, черные дыры.-.: Владос, 1994.

Размещено на Allbest.ru

...

Подобные документы

    Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.

    учебное пособие , добавлен 10.04.2007

    Астрономия каменного века и древних цивилизаций. Особенности развития астрономии как науки от Средневековья до ХХ века. Разделы современной астрономии. Экспертная оценка будущего астрономии. Современная популярность и востребованность данной профессии.

    реферат , добавлен 03.03.2012

    Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация , добавлен 05.11.2013

    Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.

    реферат , добавлен 25.01.2010

    Особенности астрономии как науки. Ее философское значение, определяющее мировоззрение людей и связь с другими дисциплинами. Основные задачи, связанные с изучением движений, строения, проблем происхождения и развития небесных тел и особенности их решения.

    презентация , добавлен 09.02.2014

    Наука - особый вид интеллектуальной деятельности, целью которой является выработка достоверного знания об окружающей действительности. Структурность системы знаний. Научная картина мира. Развитие астрономии, ее связь с религией и социальной идеологией.

    курсовая работа , добавлен 29.08.2012

    Основные понятия, необходимые для успешного изучения космической геодезии. Описание систем координат, наиболее часто используемых в астрономии для описания положения светил на небе. Общие сведения о задачах космической геодезии как науки, их решение.

    контрольная работа , добавлен 11.01.2010

    История возникновения астрономии, первые записи астрономических наблюдений. Создание греческими астрономами геометрической теории эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Гелиоцентрическая система мира Коперник

    презентация , добавлен 28.05.2012

    История создания лазера. Принцип действия и устройство лазера. Применение лазеров в астрономии. Лазерная система стабилизации изображений у телескопов. Создание искусственных опорных "звезд". Лазерный термоядерный синтез. Измерение расстояния до Луны.

    реферат , добавлен 17.03.2015

    Предмет и задачи астрономии. Особенности астрономических наблюдений. Принцип действия телескопа. Видимое суточное движение звезд. Что такое созвездие, его виды. Эклиптика и "блуждающие" светила-планеты. Звездные карты, небесные координаты и время.

Астрономия изучает строение, движение, происхождение и развитие небесных тел, их систем и всей Вселенной в целом. Другими словами, астрономия изучает изучает строение и эволюцию Вселенной.

Важными задачами астрономии являются объяснение и прогнозиро-
вание астрономических явлений, таких, как солнечные и лунные зат-
мения, появление периодических комет, прохождение вблизи Земли
астероидов, крупных метеорных тел или ядер комет.

2. Как возникла наука астрономия? Охарактеризуйте основные периоды её развития.

Как и другие науки, астрономия возникла из практических потребностей человека: необходимость ориентирования при кочевом образе жизни, предсказания наступления сезонов года при земледелии, потребность в измерении времени и летоисчеслении (составлении календарей).

3. Какие объекты и их системы изучает астрономия? Перечислите их в порядке увеличения размеров.

Астрономия изучает и исследует небесные объекты (галактики, звёзды, межзвёздную среду, планеты, спутники планет, карликовые палнеты и малые тела Солнечной системы), объясняет и прогнозирует астрономические явления (солнечные и лунные затмения, появление периодических комет, движение планет, астероидов и т. д.), исследует процессы, происходящие в недрах Солнца и звёзд, эволюцию небесных тел и Вселенной в целом.

4. Из каких разделов состоит астрономия? Кратко охарактеризуйте каждый из них.

  1. Практическая астрономия . Развивающиеся торговля и мореплавание нуждались в разработке методов ориентации, определении географического положения наблюдателя, точном измерении времени исходя из астрономических наблюдений.
  2. Небесная механика . Изучение движения небесных тел.
  3. Сравнительная планетология . Учёные взялись за изучение и сравнение Земли с другими планетами и спутниками с помощью оптических приборов.
  4. Астрофизика . Изучение физическиз явлений и химических процессов в небесных телах, их системах и в космическом пространстве.
  5. Звёздная астрономия . Изучение движения звёзд в нашей Галактике, исследование свойств других звёздных систем.
  6. Космология . Изучение происхождения, строения и эволюции Вселенной.
  7. Радиоастрономия . Изучение радиоизлучений Солнца и далёких космических объектов.

5. Что такое телескоп и для чего он предназначен?

Телескопы служат для собирания света исследуемых небесных тел и получения их изображения. Телескоп увеличивает угол зрения, под которым видны небесные тела, и собирает во много раз больше света, приходящего от светила, чем невооружённый глаз наблюдателя. Благодаря этому в телескоп можно рассматривать невидимые с Земли детали поверхности ближайших небесных тел, а также множество слабых звёзд.

В тех местах на Земле, где зародились древнейшие цивилизации, сохранилось множество письменных документов, из которых видно, что с появлением письменности стала развиваться и астрономия. Наличие письменности позволяло астрономам надежнее сохранять свои наблюдения и знания об окружающем их мире. Письменная история астрономии берет начало в III-II тысячелетиях до н. э.
Поначалу развивалась наблюдательная астрономия, которая рассматривалась как часть астрологии. Для того чтобы получать более точные сведения о передвижениях небесных тел, человек придумал гномон и астрономический календарь. Кроме этого, к древнейшим астрономическим инструментам относятся угломерные - типа отвеса с подвижной линейкой. Их направляли на Солнце для определения углового расстояния от зенита.
Накопление наблюдений и сведений о закономерностях небесных явлений привело к развитию новой науки, причем в разных странах обращали внимание на различные астрономические явления. Люди решали одни и те же задачи, описывали движения светил. Но главным было все-таки социально-экономическое различие, другой уклад жизни общества. Наиболее крупные государства (Вавилон, Египет, Китай) имели развитые торговые и государственные связи. Благодаря этому в области науки у них существовало взаимное влияние.
Государство Вавилон возникло на берегах Евфрата примерно во II тысячелетии до н. э. Согласно письменным источникам, вавилоняне уже в те времена систематически вели наблюдение за небом. Поначалу они просто фиксировали небесные явления, которые воспринимались ими как астральные божества. И только в VII веке до н. э. получила бурное развитие вавилонская математическая астрономия. Сна при помощи необычных моделей и методов описывала движение светил. Прежде всего, вавилонянами была выделена на небе Луна (как главный бог Нанна), затем Сириус, Орион и Плеяды. Все эти звезды описаны на глиняных табличках, относящихся ко II тысячелетию до н. э. В это же время в Вавилоне появилась официальная должность придворного астронома. Сн наблюдал и записывал наиболее важные изменения и явления на небе. Систематизировав все астрономические записи, вавилоняне изобрели лунный календарь. Немного позднее он был усовершенствован. В календаре было 12 синодических лунных месяцев по 29 и 30 дней поровну, год равнялся 354 дням.. Вавилонянам был известен и солнечный год. Для того чтобы согласовать с этим годом лунный календарь, они от случая кслучаю делали вставки 13-го месяца.
Начиная с 763 года до н. э. вавилоняне составили практически полный список затмений. Впоследствии эти записи использовал Птолемей. Вставки в календарь, предсказание затмений и другие нужды: - все это потребовало развития математики. Достижения вавилонян в математике были очень высокими. Они были знакомы: со стереометрией, задолго до греков сформулировали теорему, которая сейчас называется «теорема Пифагора». В IV веке до н. э. в Вавилоне была 1изобретена эклиптическая система небесных координат. Там же астрономы составили таблицы: лунных эфемерид, точно показывающих положение Луны:.
Государство Египет, как полагают историки, существовало уже в IV тысячелетии до н. э. Побудительным мотивом интереса египтян к изучению неба стало, скорее всего, сельское хозяйство, полностью зависевшее от разливов Нила. Разливы: происходили строго периодично, в определенный сезон, и египтяне сразу подметили их связь с полуденной высотой Солнца. Поэтому они и стали поклоняться Солнцу как главному богу Ра.
В Египте установилась власть фараонов, которых простые люди обожествляли. Фараоны: учредили должность придворного астронома и тщательно следили за развитием этой науки, которая имела не только прикладные, но и хозяйственные и социально-политические цели. Кроме этого, астрономией занимались жрецы и специальные чиновники, которые вели записи.
Согласно египетскому мифу, Солнце возникло из цветка лотоса, который, в свою очередь, появился из первичного водяного хаоса. Практически с самого начала зарождения нации у египтян существовала религиозно-мифологическая картина мира, имеющая астрономическую основу. По их мнению, Земля является центром Вселенной, вокруг которого вращаются все светила. А Меркурий и Венера обращаются еще ивокруг Солнца.
Поздняя астрономия получила в таследство от египтян 365-дневный календарь без вставок. Он использовался европейскими астрономами до XVI века.
Астрономия как наука была известна и в Китае. Примерно во тысячелетии до н. э. китайскими астрономами небо было разделено на 28 участков-созвездий, в которых двигались Солнце, Луна и планеты:. Потом они выделили Млечный Путь, назвав его явлением неизвестной природы:. Самый ранний звездный каталог, включающий свыше 800 звезд, был составлен Гань Гуном и Ши Шэнем приблизительно в 355 году до н. э. Это примерно на сто лет раньше Тимохариса и Аристилла в Греции. Немного позднее знаменитый китайский астроном Чжан Хэн поделил небо на 124 созвездия и зафиксировал около 2,5 тысячи видимых звезд.
С III века до н. э. в Китае люди пользовались солнечными и водяными часами. Все астрономические наблюдения велись со специальных площадок-обсерваторий.
Как и у других народов древности, общие птредставления китайцев о Вселенной имели мифологическую основу. Центром мира у них считалась Китайская империя («Поднебесная, или Серединная, империя»). Вообще, история космогонических представлений древних китайцев дошла до настоящего времени в хрониках династий и начинается с эпохи дитстии Пан-Инь. В это время было создано учение о пяти земных первоэлементах-стихиях. Это вода, огонь, металл, дерево, земля. Число стихий связано с древним делением на пять сторон света, атакже соответствует числу подвижных звезд-планет. Символически это можно представить в сочетаниях: вода - Меркурий - север, огонь - Марс - юг, металл - Венера - запад, дерево - Юпитер - восток, земля - Сатурн - центр. Кроме этого, существовал еще и шестой элемент - ци (воздух, эфир).
В VETI-VEI веках до н. э. возникла идея всеобщего изменения в природе и зарождения самой Вселенной. Считалось, что она появилась вре-зультате борьбы: двух противоположных начал - положительного, светлого, активного, мужского (ян) и отрицательного, темного, пассивного, женского (инь).
В связи с тем что Китай со временем стал замкнутой страной, развитие наук, в том числе и астрономии, затормозилось.
Не меньший интерес вызывает и Индия. Самыми древними источниками, рассказывающими об астрономических занятиях древних индийцев, считаются печати с изображениями на космогонические мифологические темы (которые датируются III тысячелетием до н. э.). Имеющиеся на них короткие надписи не расшифрованы и по сей день. Печати относятся киндской цивилизации, главными городами которой являлись Хараппа, МЬхенджо-Даро, Калибанган. К XVII-XVI векам центры индской культуры были значительно ослаблены землетрясениями и внутренними противоречиями, а затем окончательно разрушены ариями ииндо-ираноязычными племенами, давшими начало нынешнему населению Индии.
Документов об астрономических наблюдениях периода индской культуры сохранилось очень немного, но по ним все же можно понять, как складывались представления древних индусов о Вселенной. Первыми объектами исследования были Солнце и Луна. Как и у других древних народов, астрономическими изысканиями занимались жрецы, которые исоставили впоследствии календарь. В нем начиная с VI века до н. э. в названиях дней семидневной недели были использованы имена семи подвижных светил: первый день Луны, второй - Марса, третий - Меркурия, четвертый - Юпитера, пятый - Венеры, шестой - Сатурна, седьмой - Солнца. Некоторое сходство с египетским календарем придавало деление месяца на две половины. В древнеиндийской астрономии это были светлая и темная половины.
Самые древние памятники цивилизации на территории Греции относятся к Ш-П тысячелетиям до н. э. В то время уже существовали поселения и даже города, жители которых занимались морской торговлей.
На представление древних греков о Вселенной большое влияние оказали более ранние культуры: египетская, шумеро-вавилонская и, вероятно, древнеиндийская. Греция имела связи с Египтом, Вавилоном, сгосударствами Ближнего Востока.
Астрономическими наблюдениями занимались многие греческие философы и астрономы. Из поэм Гесиода и Гомера известно, что древним грекам были знакомы многие созвездия. Они даже создали практически о каждом из них свою легенду.
Большая Медведица. По утверждению Гесиода, она была дочерью Ликаона и жила в Аркадии. Но вскоре Каллисто наскучил родной город, и она переселилась в горы, где проводила время, охотясь вместе с Артемидой. Там и увидел ее Зевс, верховный бог. Его поразила красота девушки, и он соблазнил ее. Охотница долго скрывала свое положение, но подошла пора родов, и Артемида догадалась, что с ней произошло. Разгневавшись, богиня превратила ее в медведицу. Так, уже находясь в облике животного, 1Каллисто родила сына, и нарекла его Аркадом.

Согласитесь, сегодня человек, в какой бы самой отдаленной области науки или народного хозяйства он ни работал, должен иметь представления, хотя бы общее, о нашей Солнечной системе, звездах и современных достижениях астрономии.

Человечеству еще не ясны те условия, которые привели к формированию разнообразных природных комплексов, в том числе благоприятствовавших зарождению и развитию жизни на Земле. На большинство этих вопросов отвечает наука астрономия. В этом докладе речь пойдет о зарождении этой древней науки, ее практической значимости.

Я выбрал эту тему потому, что загадочный мир образования звезд и планет с давних времен притягивал к себе внимание людей. Эта тема была актуальна на протяжении тысячелетий и лишь в последние 10 лет были получены достоверные сведения о наличии планет и планетных систем и у других звезд. Познание планет и планетных систем приведет человечество и к решению другой глобальной проблемы - существование жизни на планетах, а это предстоит решить человечеству только в третьем тысячелетии.

Задачами работы являются: изучить историю возникновения астрономии, проследить этапы ее становления; познакомиться с первыми учеными-астрономами; узнать и описать первые древнейшие обсерватории, составить сравнительную таблицу длины звездного дня.

В этом году мы в школе впервые стали изучать историю нашей земли, планет и звезд. Этот предмет очень заинтересовал меня, и поэтому я обратился к этой теме.

При написании работы использован материал энциклопедий, астрономических сайтов Интернета, астрономических словарей, периодической печати.

Структура работы: в первой части рассматриваются вопросы зарождения астрономии и ее первоначальное значение; во второй части – поднимаются вопросы строительства древнейших обсерваторий.

1. Астрономия как наука, ее первоначальное значение.

Астрономия - наиболее древняя среди естественных наук, в переводе с греческого (греч. αστροννομος , от αστρον - звезда, νομος - закон) наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел (звезд, планет, метеоритов и т. п.) образованных ими систем (звездные скопления, галактики и т. п.) и всей Вселенной в целом. Один из выдающихся астрономов античности - Птолемей, автор энциклопедии древней астрономии, "Альмагеста", - так объяснял причины побуждения к занятиям астрономией, которую он считал частью математики: "Только математика. доставляет своим воспитанникам прочное и надежное знание. В этом также причина, заставляющая нас заниматься со всем усердием этой превосходной наукой. в особенности той ее ветвью, которая касается знания божественных небесных светил. Поскольку одна только эта наука посвящена изучению вечно неизменного мира"

Астрономия, как и все другие науки, возникла из практических потребностей человека. О связи наблюдений небесных светил с практической жизнью и об их влиянии на общественные процессы писал и Коперник: «. необходимость вычислять периоды повышения и спада воды в Ниле создала египетскую астрономию, а вместе с тем господство касты жрецов как руководителей земледелия». Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей). В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии. Вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Астрономические познания были характерны для многих древних народов.

2. Астрономия в Древнем Египте.

Известно, что еще за 3 тысячи лет до н. э. египтяне уже изобрели египетские календари: лунно-звёздный - религиозный и схематический - гражданский.

Обитатели долины Нила, где нет настоящей зимы, делили год на три сезона, которые зависели от поведения реки. С Нила, от которого зависела вся жизнь египтян, и началась астрономия этой древней цивилизации.

К тому времени в Египте существовал лунный календарь из 12 месяцев по 29 или 30 дней - от новолуния до новолуния. Чтобы его месяцы соответствовали сезонам года, раз в два-три года приходилось добавлять тринадцатый месяц. Сириус "помогал" определять время вставки этого месяца. Такой "наблюдательный" календарь с нерегулярным добавлением месяца плохо подходил для государства, где существовали строгий учёт и порядок. Поэтому для административных и гражданских нужд был введён так называемый схематический календарь. В нём год делился на 12 месяцев по 30 дней с добавлением в конце года дополнительных пяти дней.

В Древнем Египте существовала сложная мифология с множеством богов. Астрономические представления египтян были тесно связаны с ней.

В Карнаке, около Фив, были найдены самые древние египетские водяные часы. Они изготовлены в ХIV в. до н. э. Главными солнечными часами в Египте были, конечно, обелиски, посвящённые Солнцу-Ра. Такой астрономический прибор в виде вертикального столба называется гномон. Древние египтяне, как и все народы, делили небо на созвездия. Всего их известно 45. Планеты египтянам были известны с давних времён. Казалось бы, египетская астрономия не может похвастаться особыми достижениями. Египтяне, оседлый народ, живший в неширокой речной долине, не нуждались в астрономических методах ориентирования. Сроки сельскохозяйственных работ египтянам подсказывала река, и достаточно было установить момент начала её разлива, чтобы, не глядя на небо, знать, что будет дальше. Жрецы наблюдали звёзды в основном для измерения ночного времени, а писцы ввели упрощённый календарь, который не был привязан к сезонам и как бы пренебрегал астрономией. Тем не менее, именно на египетской земле, в Александрии, работали позднее греческие учёные, заложившие основы современной астрономии. Здесь трудились Аристарх Самосский, Тимохарис, Эратосфен, именно здесь написал свой знаменитый астрономический труд Клавдий Птолемей. Схематический календарь не следовал за сезонами, однако он послужил идеальной равномерной шкалой для определения интервалов между затмениями, наблюдавшимися через много лет одно после другого. Именно этим календарём пользовался в своих расчётах Птолемей, а позже и сам Коперник

3. Астрономические познания майя.

Для майя (начало цивилизации майя датируется II тысячелетием до н. э.) астрономия была не абстрактной наукой. В условиях тропиков, где нет резко обозначенных природой времен года, и долгота дня и ночи остается почти неизменной, астрономия служила практическим целям. Благодаря своим астрономическим познаниям жрецы сумели высчитать продолжительность солнечного года: 365,2420 дня! Иными словами, календарь, которым пользовались древние майя, точнее нашего современного на 0,0001 дня! Год делился на восемнадцать месяцев; каждый соответствовал определенным сельскохозяйственным работам: подысканию нового участка, рубке леса, его выжиганию, посеву ранних и поздних сортов кукурузы, сгибанию початков, чтобы защитить их от дождя и птиц, сбору урожая и даже уборке зерен в хранилища. Летосчисление майя велось с некой мифической нулевой даты. Она соответствует, как высчитали современные ученые, 5041 738 году до нашей эры! Известна также начальная дата хронологии майя, но и ее, несомненно, также следует отнести к числу легендарных - это 3113 год до нашей эры. С годами календарь майя становился все сложнее и сложнее. Все больше и больше терял он свое первоначальное значение практического пособия по сельскому хозяйству, пока, наконец, не превратился в руках жрецов в грозный и весьма действенный инструмент мрачной и жестокой религии.

4. Развитие астрономии на Среднем Востоке (Древний Китай).

Большую роль играет происхождение древней китайской астрономии, лежащей в основе астрономических познаний всего Дальнего Востока. В Древнем Китае за 2 тысячи лет до н. э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. В развитии древнекитайской астрономии наблюдается плавный эволюционный ход. Ход этот можно разбить на такие периоды:

1) Введение солнечного календаря во времена легендарного императора Яо, правление которого китайцы относят к XXIV в. до н. э.

2) Введение системы 28 лунных станций (домов), примерно, в начале Чжоуской династии, т. е. в XIII в. до н. э.

3) Введение гномона ту-гуй, около середины периода, охватываемого Весенними и осенними записями для наблюдения точной эпохи солнцестояния.

4) Выработка твердой календарной системы Календаря Чжуаньюй (Чжуань-юй ли) в это время; наблюдение за 5 планетами; основание теории Пяти стихий (У-син шо): дерево (му), огонь (хо), земля (ту), металл (цзинь), вода (шуй), соединение которых обуславливает все в космосе. Начало систематических наблюдений над звездами.

5) Принятие первой официальной системы - Великого первого календаря (Тай-чу ли) в 104 г. до н. э. Это была первая система, официально признанная китайским правительством.

5. Развитие астрономии в Древней Греции.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх Никейский (II в. до н. э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н. э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков. Гиппарх составил первый в Европе звёздный каталог, включивший точные значения координат около тысячи звёзд. Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др.

В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

III. Древнейшие обсерватории мира.

Стоунхендж - «висячие камни».

«Восьмое чудо света» Стоунхендж был возведен на рубеже каменного и бронзового веков, за несколько столетий до падения гомеровской Трои. Период ее постройки в настоящее время установлен радиоуглеродным методом из анализа сожженных при захоронении человеческих останков.

Астроному Джеральду Хокинсу удалось установить назначение Стоунхенджа. Стоунхендж настолько стар, что уже в эпоху античности его истинная история была забыта. Греческие и римские авторы о нем почти не упоминают. Кто же построил Стоунхендж? Стоунхендж был построен в период между 1900 и 1600 годами до н. э. , примерно на тысячу лет позже египетских пирамид и за несколько столетий до падения Трои. Он воздвигался в три этапа. Первое строительство, следы которого можно обнаружить, было начато около 1900 года до н. э. , когда на исходе каменного века люди вырыли большой кольцевой ров, выбрасывая землю двумя валами по обе его стороны. Внутри, по периметру вала, первые строители вырыли кольцо из 56 «лунок Обри». Внешний вал, теперь уже почти исчезнувший, имел форму почти правильного круга диаметром 115 метров. Прямо от внутреннего края рва поднимался самый внушительный меловой компонент раннего Стоунхенджа - внутренний вал. Эта ослепительно белая насыпь образовывала в окружность диаметром 100 метров. Сооруженный из твердого мела, он и сейчас хорошо заметен. Вход был ориентирован так, что человек, стоящий в центре круга и смотрящий через входной разрыв, утром дня летнего солнцестояния увидел бы, как солнце встает чуть левее Пяточного камня. Этот камень - возможно, самый первый большой камень, который ранние строители установили в Стоунхендже,- имеет длину 6 метров, ширину 2,4 м и толщину 2,1 метр; на 1,2 м он закопан в землю, и оценивается в 35 тонн. Около 1750 года до н. э. начался второй этап строительства Стоунхенджа. Новые строители установили первый ансамбль «больших камней». По меньшей мере 82 голубых камня были установлены двумя небольшими концентрическими кругами на расстоянии 1,8 м друг от друга и около 10,5 м от внутреннего кольца. Двойной круг голубых камней, по-видимому, должен был слагаться из радиально расходящихся лучей, включающий каждый по два камня. В 1700 году до н. э. в Британии начинается бронзовый век, а вместе с ним и третий этап строительства Стоунхенджа. Последними строителями, двойной круг, начатый во второй период, но незавершенный, был разобран. Голубые камни заменили на большие сарсеновые валуны, числом 81 или больше. В этот период был построен, по всей видимости, овал из 20 голубых камней внутри сарсеновой подковы. Может быть, тогда же был поставлен «Алтарный» камень, который был уникален по своему минералогическому составу. Кроме того, они установили кольцо из голубых камней между сарсеновой подковой и сарсеновым кольцом. И на этом постройка завершилась.

Многие люди задумывались над астрономическим значением Стоунхенджа, но не могли сказать по этому поводу ничего определенного. Например, в 1740 году Джон Вуд предположил, что Стоунхендж был «храмом друидов, посвященным Луне». В 1792 году человек, о котором известно только то, что он называл себя Уолтайр, утверждал, что Стоунхендж представлял собой «огромный теодолит для наблюдения за движением небесных тел и был воздвигнут по крайней мере 17 тысяч лет назад». В 1961 году Дж. Хокинс пришел к выводу, что «проблема Стоунхенджа заслуживает того, чтобы призвать на помощь вычислительную машину». Прежде всего, программисты Шошана Розенталь и Джули Коул взяли карту Стоунхенджа и поместили ее в автоматическую измерительную машину «Оскар». После «проверки» выяснилось, что основные и часто повторяющиеся направления Стоунхенджа указывали на Солнце и Луну. После того, как установили, что строители сориентировали Стоунхендж по Солнцу и Луне с таким искусством, последовательностью и упорством, естественно возникает вопрос: «Зачем?» Дж. Хокинс считает, что солнечно-лунные направления в Стоунхендже были установлены и отмечены по двум, а может быть, по четырем причинам:

1) они служили календарем, особенно полезным для предсказания времени начала сева;

2) они способствовали установлению и сохранения власти жрецов;

3) они служили для предсказания затмений Луны и Солнца.

Пользуясь ими для отсчета лет, жрецы Стоунхенджа могли следить за движением Луны и тем самым предсказывать «опасные» периоды, когда могли происходить наиболее эффектные затмения Луны и Солнца.

В 2004 г. во время археологических раскопок в Великобритании обнаружены останки строителей Стоунхенджа с радиоактивными зубами. Скелеты семерых мужчин, которым около 4300 лет, были найдены во время строительных работ недалеко от построек Стоунхенджа. После длительных исследований, британские археологи объявили, что именно эти люди принимали участие в строительстве знаменитого культового сооружения и были захоронены около 4300 лет назад вместе с глиняными сосудами и наконечниками стрел. Это четверо братьев и трое их детей. В то время как ученые все еще продолжают спорить, являлся ли Стоунхендж культовой постройкой или древней обсерваторией, уже найден ответ на вопрос о том, откуда взялись двадцатиметровые каменные глыбы сооружения. Самые необычные из них, так называемые "синие камни", были привезены с холмов Презели, которые находятся в 250 км от Стоунхенджа в Уэльсе - местность с наиболее высокой природной радиоактивностью. Ученые исследовали их зубную эмаль и обнаружили в ней большое количество радиоактивного стронция. Во время роста зубов в них накапливается своего рода химический отпечаток окружающей среды.

Древнейшие обсерватории Китая.

Китайские археологи обнаружили древнейшую в мире астрономическую обсерваторию, возраст которой оценивается в 4300 лет. С ее помощью можно было определить смену времен года с точностью до суток. Древнее сооружение найдено в северной провинции Шаньси на месте поселения Таосы, существовавшего между 2600 и 1600 годами до нашей эры. Раскопки на археологической площадке, ведущиеся на площади около 3 млн кв метров близ города Линьфэнь, открыли взору ученых некое подобие британского "Стоунхенджа": 13 каменных колонн 4-метровой высоты, расположенных на определенном расстоянии друг от друга вдоль полуокружности радиусом 40 метров. Как сообщил Хи Ну, исследователь из Института археологии при Академии общественных наук Китая, эта обсерватория по меньшей мере на 2000 лет старше аналогичного сооружения народа майя в Центральной Америке. По его словам, это сооружение, построенное на закате примитивного общества, "служило не только для астрономических наблюдений, но и совершения жертвенных обрядов" .

Еще одна древняя обсерватория в Китае расположена в юго-западной части моста Цзяньгомэнь города Пекин. Древняя обсерватория была построена при династии Мин (примерно в 1442 году до н. э.) и является одной из самых древних обсерваторий в мире. Древняя обсерватория также известна целостным сооружением, прекрасным прибором высокой точности, продолжительной историей и особенным местонахождением, играет важную роль в обмене восточной и западной культуры всего мира. В династии Мин древняя обсерватория Пекина названа «Гуансинтай» (площадка для наблюдения за звёздами)

На площадке установлена простая сфера, армиллярная сфера, небесный глобус и другие крупные астрологические приборы, также гномон и клепсидра.

Высота корпуса обсерватории – около 14 метров. Длина её площадки с севера на юг – 20,4 метра, а с запада на восток - 23,9 метра, там установили 8 астрологических приборов, которые были произведены при династии Цин.

До 1929 года, Древняя обсерватория служила местом для астрономических наблюдений на протяжении 500 лет, она считается самой давней обсерваторией, где сохранились непрерывные наблюдения проводимые в тот период.

Обсерватория Улугбека.

Развитие астрономии на Среднем Востоке связано со становлением Арабского Халифата в VII - VIII вв. Как и во всех других государствах астрономия использовалась сначала чисто в практических целях и использовалась для строительства многочисленных мечетей, где требовалось определения "киблы" - направления на Мекку, куда мусульмане направляли свои взоры во время молитвы. Однако бурное развитие и расширение государств требовало всё более глубоких знаний математики и астрономии, вследствие чего начали создаваться астрономические обсерватории, в которых работали квалифицированные астрономы и математики, и уже в IX-XI вв. уровень астрономических исследований на Среднем Востоке достиг больших высот. Именно здесь творили выдающиеся энциклопедисты: Мухаммед бин-Муса ал-Хорезми (Алгоритми) (780-850 гг.) в Багдадской обсерватории, Абу-Райхан ал-Бируни (973-1048 гг.), Абу-Али ибн-Сино (980-1037 гг.), ас-Суфи, Омар Хайям (1040-1123 гг.) в Исфаганской обсерватории и Насир-ад-дин Туси (1201-1274 гг.) в Мерагской обсерватории. На этом прочном фундаменте и возникла в начале XV века самаркандская астрономическая школа, идейным и научным вдохновителем которой был Улугбек. Судьба предназначала ему участь наследника престола великой империи, а природный талант, ум и целеустремлённость открыли путь к научному подвигу. Султан Мухаммед Тарагай Улугбек, сын Шахруха, родился 22 марта 1394 года в военном обозе своего знаменитого деда Амира Темура во время стоянки в городе Султании (ныне это территория Ирана). Ещё совсем ребёнком Улугбек сопровождал своего знаменитого деда Тимура в его завоевательных, опустошительных походах. Улугбек побывал в Армении, Афганистане, сопровождал Тимура в походе на Индию и Китай. Наукой Улугбек начал увлекаться ещё в молодости. Большую часть своего времени он проводил в богатейшей библиотеке, где были сосредоточены книги, собранные его дедом и отцом со всего света. Улугбек любил поэзию и историю. Учителями Улугбека были выдающиеся учёные, которыми славился двор Тимура, и среди них - математик и астроном Казы-заде Руми. Он показал девятилетнему Улугбеку руины знаменитой обсерватории в Мараге, возможно, именно это и стало причиной того, что основное внимание Улугбек уделял занятиям астрономией. Главным детищем Улугбека, а может быть и главной целью его жизни, стала обсерватория, которая была построена в 1428-29 годах (832 год хиджры) на скалистом холме у подножия возвышенности Кухак (современный Чупан-Ата) на берегу арыка Обирахмат и представляла собой трёхэтажное здание, покрытое прекрасными изразцами. Ещё до начала строительства для астрономических наблюдений были созданы астролябия с диаметром в один газ (равный 62 см) и звездный глобус. На стене своего дворца Улугбек установил солнечные часы. Круглое здание обсерватории имело в диаметре 46,4 метра, высоту не менее 30 метров и вмещало грандиозный инструмент - квадрант, на котором производились наблюдения за Солнцем, Луной и другими планетами небесного свода. В 60-х годах ХХ-го века архитектор В. А. Нильсен попытался воспроизвести внешний вид обсерватории, каким он представлялся в эпоху Улугбека. План самого здания был весьма сложным, в нём присутствовали большие залы, комнаты, коридоры. Научный труд Улугбека "Новые гураганские астрономические таблицы" явился выдающимся вкладом в сокровищницу мировой астрономической науки. Среди многочисленных астрономических таблиц Улугбека большой интерес представляет таблица географических координат 683 различных городов не только Средней Азии, но России, Армении, Ирана, Ирака и даже Испании. В основе астрономических работ Улугбека лежит геоцентризм, что является вполне закономерным явлением для средневековой эпохи. С поразительной точностью произведено вычисление длины звёздного года. По данным Улугбека, звёздный год равен 365 дням 6 часам 10 минутам 8 секундам, а истинная длина звёздного года (по современным данным) составляет 365 дней 6 часов 9 минут 9,6 секунды. Таким образом, ошибка, допущенная в то время, составляет менее одной минуты.

Звездный каталог самаркандских астрономов был вторым после каталога Гиппарха, составленного за 17 столетий до этого. Звёздные таблицы Улугбека остались последним словом средневековой астрономии и высшей ступенью, которой могла достичь астрономическая наука до изобретения телескопа. Вот сколь велико значение многолетних кропотливых научных исследований самаркандских астрономов XIII века. Результаты их научных достижений оказали огромное влияние на развитие науки на Западе и Востоке, в том числе на развитие науки в Индии и Китае.

Древняя обсерватория Европы.

Обсерватория, найденная в небольшом местечке под название Гозек недалеко от города Галле в федеральной земле Саксония-Анхальт является своего рода европейским Стоунхенджем. Это земляное сооружение представляло собой площадку диаметром 75 метров, где располагались два деревянных ограждения круглой формы. В трех местах в ограждениях были сделаны проходы - ворота к солнцу. 21 декабря, в день зимнего солнцестояния, внутри сооружения можно было наблюдать причудливую игру солнечного света. На восходе солнечный свет попадал точно в восточные ворота, а на закате солнца - непосредственно в ворота западные. Данная конструкция свидетельствует о том, что уже за 5000 лет до рождества Христова люди пытались найти на небосводе точки отсчета, чтобы определять годичные циклы. До сих пор ученые не подозревали, что доисторические земледельцы были на такое способны. Но гозекская обсерватория использовалась не только для наблюдения за звездами и определения времен года для нужд сельского хозяйства. Сооружение было и культовым местом, поскольку в те времена люди почитали созвездия как богов. Данная обсерватория положила начало созданию целой серии аналогичных сооружений в Европе в период неолита и бронзового века.

В Башкирии обнаружена древнейшая евразийская обсерватория.

Челябинские ученые пришли к выводу, что близ поселка Ахуново Учалинского района Башкирии была расположена древняя обсерватория Евразии. Мегалитический памятник Ахуново был обнаружен еще в 1996 году, но раскопки завершились только в этом году. В результате комплекса археоастрономических работ установлено, что мегалитический комплекс был сооружен в древности как астрономическая обсерватория. Наблюдения с его помощью восходов и заходов Солнца позволяют вести систематический календарь, содержащий ключевые астрономические даты: дни летнего и зимнего солнцестояния. По совокупности археологических и археоастрономических данных можно предположить, что он был построен в III тыс. до н. э. , однако эта гипотеза нуждается в дополнительной проверке. В 70 метрах от мегалитического комплекса обнаружено поселение эпохи поздней бронзы.

Рязанский Стоунхендж.

Два года назад российский археолог Илья Ахмедов сделал сенсационное открытие. В непосредственной близи от городища Старой Рязани в местечке Спасская Лука было найдено древнее сооружение, схожее по строению с английским Стоунхенджем. Его возраст оценен в 4 тысячи лет. Однако в отличие от своего британского собрата, Рязанский Стоунхендж оказался меньшим в размерах, к тому же не каменным, а деревянным. Но, по словам Ахмедова, и английская обсерватория первоначально также была из дерева

В течение последующих двух лет подобные открытия происходили почти на всей территории Евразии. Урал, Байкал, Чувашия, Башкирия, Карелия, Якутия, Адыгея, Армения, Казахстан, Таджикистан, Германия, Австрия Словакия – далеко не полная география древних обсерваторий. Причем делали открытия не исследователи-дилетанты, а ученые мужи. Естественно, каждый ученый считал своим долгом подчеркнуть, что открытая им обсерватория как минимум на тысячу лет старше знаменитых «висячих камней» в Англии. Работы археологов продолжаются.

Может быть в ближайшие годы нас ждут новые сенсации.

Заключение.

Познать историю нашей Земли, Вселенной, больше узнать о звездах, затмениях, планетах человечеству хотелось с самого его появления. Еще задолго до возникновения науки астрономии человек замечал различные природные явления, как то: затмение солнца, движение планет, он задумывался, почему наступают разливы рек.

К моменту возникновения науки астрономии древние люди накопили богатый практический опыт в познании мира. Астрономия, как и все другие науки, возникла из практических потребностей человека.

Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кроме того, вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний.

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

Знаниями в области астрономии активно пользовались жрецы, желая распространять свою власть на верующих.

Древним культовым сооружением древности являлись обсерватории. Люди наблюдали за восходом и закатом солнца, пытались вычислить длину звездного дня и года, составляли календари, вели записи за наступлением затмений.

Все эти знания использовались ими в практических целях вплоть до наступления эпохи Средневековья, когда новые открытия, сделанные астрономами позволили изменить представление человека о положении Земли.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов.