Чему равен ток формула. Что такое сила тока

Содержание:

Движение заряженных частиц в проводнике в электротехнике называется электрическим током. Электроток не характеризуется только прошедшим через проводник значением количества электрической энергии, так как за 60 минут через него может пройти электричество равное 1 Кулону, но и такое же количество электричества можно пропустить через проводник за одну секунду.

Что такое сила тока

Когда рассматривается количество электричества, протекающее через проводник за разные интервалы времени, понятно, что за меньший промежуток времени ток течет интенсивней, поэтому в характеристику электротока вводится еще одно определение - это сила тока, которая характеризуется протекающим в проводнике током за секунду времени. Единицей измерения величины силы проходящего тока в электротехнике принят ампер.

Иными словами, сила электрического тока в проводнике - это количество электричества, которое прошло через его сечение за секунду времени, маркировка литерой I. Силу тока измеряют в амперах - это единица измерения, которая равняется силе неизменяющегося тока, проходящего по бесконечным параллельным проводам с наименьшим круговым сечением, удаленным друг от друга на 100 см и расположенным в вакууме, который вызывает взаимодействие на метре длины проводника силой = 2*10 минус 7 степени Ньютона на каждые 100 см длины.

Специалисты часто определяют величину проходящего тока, на Украине (сила струму) она равна 1 амперу, когда через сечение проводника проходит каждую секунду 1 кулон электричества.

В электротехнике можно увидеть частое применение других величин в определении значения силы проходящего тока: 1 миллиампер, который равен единица/ Ампер, 10 в минус третьей степени Ампер, один микроампер - это десять в минус шестой степени Ампер.

Зная количество электричества, прошедшее через проводник за определенный промежуток времени, можно вычислить силу тока (как говорят на Украине - силу струму) по формуле:

Когда электрическая цепь замкнута и не имеет ответвлений, тогда в каждом месте ее поперечного сечения протекает за секунду одинаковое количество электричества. Теоретически это объясняется невозможностью накапливания электрических зарядов в каком либо месте цепи, по этой причине сила тока везде одинакова.

Данное правило справедливо и в сложных цепях, когда есть ответвления, но относится к некоторым участкам сложной цепи, которые можно рассматривать в виде простой электроцепи.

Как измеряется сила тока

Величину силы тока измеряют прибором, который называется амперметр, а также для небольших значений - миллиамперметр и микроамперметр, который можно увидеть на фото внизу:

Среди людей бытует мнение, что когда измеряется сила тока в проводнике до нагрузки (потребителя), то значение будет выше, чем после нее. Это ошибочное мнение, основанное на том, что якобы какое-то значение силы будет расходоваться на то, чтобы привести потребитель в действие. Электроток в проводнике - это процесс электромагнитный, в котором участвуют заряженные электроны, они направленно двигаются, но энергию передают не электроны, а электромагнитное поле, которое окружает проводник.

Количество электронов, вышедших из начала цепи, будет равно количеству электронов и после потребителя в конце цепи, они не могут быть израсходованы.

Какие проводники бывают? Специалисты дают определение понятию «проводник» - это материал, в котором частицы, имеющие заряд, могут перемещаться свободно. Такие свойства на практике имеют почти все металлы, кислота и солевой раствор. А материал или вещество, в котором движение заряженных частиц затруднено или вообще невозможно, называются изоляторами (диэлектриками). Часто встречающиеся материалы-диэлектрики - это кварц или эбонит, искусственный изолятор.

Вывод

На практике современное оборудование работает с большими величинами тока, до сотни, а то и тысячи ампер, а также и с малыми значениями. Примером в повседневной жизни величины тока в разных приборах может быть электрическая плита, где она достигает значения в 5 А, а простая лампа накаливания может иметь величину 0,4 А, в фотоэлементе величина проходящего тока измеряется в микроамперах. В линиях городского общественного транспорта (троллейбус, трамвай) значение проходящего тока достигает 1000 А.

Господа, всем привет!

Сегодня речь пойдет о таком фундаментальном понятии физики вообще и электроники в частности, как сила тока . Каждый из вас, наверняка, не раз слышал этот термин. Сегодня мы постараемся разобраться в нем чуть получше.

Сегодня речь в первую очередь пойдет о постоянном токе . То есть о таком, величина которого все время постоянна по силе и по направлению. Уважаемые господа зануды могут начать докапываться - а что значит "все время"? Нет такого термина. На это можно ответить, что величина тока не должна меняться на протяжении всего времени наблюдения.

Итак, ток. Сила тока. Что же это такое? Все достаточно просто. Током называется направленное движение заряженных частиц. Заметьте, господа, именно направленное . Беспорядочное - тепловое - движение, от которого носятся туда-сюда электроны в металле или ионы в жидкости/газе нас мало интересует. А вот если на это беспорядочное движение наложить перемещение всех частиц в одну сторону - так это совсем иной коленкор.

Какие могут быть заряженные частицы? А вообще, пофиг какие, без разницы. Положительные ионы, отрицательные ионы, электроны - значение не имеет. Если мы имеем направленное движение этих уважаемых товарищей - значит, имеет место быть электрический ток.

Очевидно, ток имеет какое-либо направление. За направление тока принято принимать движение положительных частиц. То есть, хоть электроны и бегут от минуса к плюсу, считается, что направление тока в этом случае обратное - от плюса к минусу. Вот так вот все закручено. Что поделаешь - дань традиции.

Схематичное изображение проводника с током приведено на рисунке 1.


Рисунок 1 - Схематичное изображение проводника с током

Представим себе облако с комарами. Да, знаю, мерзкие существа, а уж облако - вообще жуть какая-то. Но все же, подавив отвращением, попытаемся их вообразить. Так вот, в этом облаке каждый мерзкий комар летает сам по себе. Это беспорядочное движение. А теперь представим себе спасительный ветерок. Он уносит одновременно всю эту комариную орду в одну сторону, будем надеяться, от нас. Это направленное движение. Заменив комаров на электроны, а ветерок - на некую таинственную движущую силу получим в общем-то некую аналогию с электрическим током.

Чаще всего имеет место быть ток, вызванный движением электронов. Да, друзья, во всей нашей жизни нас окружают бедные электрончики, вынужденные направленно, можно сказать строем, перемещаться под действием принуждающей силы. Они бегут по проводам линий электропередач, во всех наших розетках, во всех наших умных девайсах - компах, ноутах, смартфонах и работают просто как папа Карло, чтобы облегчить нашу нелегкую жизнь и наполнить ее приятностями.

Комары - комарами, это все круто, но настало время формальных определений.

Итак, господа, сила тока - это отношение заряда Δq , который переносится через некоторое сечение проводника S за время ∆t. Измеряется сила тока, как многие уже знают, в Амперах. Итак - ток в проводнике равен 1 Амперу, если через этот проводник проходит 1 Кулон за 1 секунду.

«Отлично!» - воскликнет уважаемый читатель. И что мне делать с этой формулой?!! Ну время ладно, у меня секундомер в айфоне есть, я засеку. А с зарядом как быть? Мне что, считать количество электронов в проводе и потом умножать на заряд одного электрона, благо это величина известная, чтобы определить ток?!

Спокойствие, господа! Все будет. Не спешите. Пока просто запомните, что была какая-то такая формулка. Потом окажется, что с ее помощью можно считать некоторые крутые вещи типа заряда конденсаторов и еще много чего.

Ну а пока… Пока можете взять амперметр, померить ток в цепи с лампочкой и узнать, какой заряд протекает каждую секунду через сечение проводника q = I·t = I·1c= I .

Да, каждую секунду через сечение проводника протекает заряд, равный силе тока в нем. Можете теперь умножить эту величину на заряд электрона (для тек кто забыл напоминаю, что он равен) и узнать, сколько электронов бежит в цепи. Может возникнуть ворос - нафига? Ответ автора - просто так, ради интереса. Практической пользы вы вряд ли из этого выжмите. Если только порадуете своего учителя. Задачка эта чисто академическая.

Может возникнуть вопрос - а как амперметр меряет ток? Он что, считает электроны? Конечно, нет, господа. Здесь мы имеем косвенные измерения. Они основаны на магнитном действии тока в дедовских аналоговых стрелочных амперметрах или на законе ома - путем преобразования протекающего тока через известное сопротивление в напряжение и последующей его обработкой - во всех современных мультиметрах. Но об этом чуть позже.

Сейчас я приведу этот расчет. Он довольно прост и должен перевариться даже гуманитариями. Если же у вас индивидуальная непереносимость матана, что ж, можете просто глянуть на результат.

Вспомним про наш заряд ∆q , которые проходит за время ∆t через сечение проводника ∆S про который мы говорили чуть выше. Как истинные математики, усложним его до безобразия, чтобы только после напряжения мозга было понятно, что мы написали тождество.

Господа, чесслово, никакого обмана. e − заряд электрона, n − концентрация электронов, то есть число штук в одном кубическом метре, v − скорость движения электронов. Очевидно, что v∙∆t∙∆S − это по сути объем, который пройдут элеткроны. Концентрацию множим на объем - получаем штуки, сколько штук электронов прошло. Штуки множим на заряд одного электрона - получаем общий заряд, прошедший через сечение. Я ж говорил, что все честно!

Введем понятие плотности тока. Зануды, которые уже что-то читали про это, сейчас воскликнут - ага, это векторная величина! Не спорю, господа, векторная. Но мы, для упрощения и без того нелегкой жизни, будем считать, что направление вектора плотности тока совпадает с осью проводника, что и бывает в большинстве случаем. Поэтому векторы сразу становятся скалярами. Грубо говоря, плотность тока - это сколько ампер приходится на один квадратный метр сечения проводника. Очевидно, для этого надо разделить силу тока на площадь. Имеем

Теперь, надеюсь, понятно, зачем мы так преобразовывали формулу? Чтобы сократить кучу всего!

Помним главное - мы ищем скорость. Выражаем ее:

Все бы хорошо, но концентрацию мы пока не знаем. Вспоминаем химию. Там была такая формулка

Где ρ=8900 кг/м 3 - плотность меди, N A =6·10 23 число Авогадро, M=0,0635 кг/моль - молярная масса.

Господа, надеюсь не будет необходимости объяснять, откуда эта формула взялась. С химией я не очень дружу, честно. Хоть я все 11 лет проучился в школе с углубленным изучением химии, однако, в 8 классе я поступил в физико-математический класс, увлекся физикой, в особенности той ее частью, где рассказывается про электричество, а на химию, можно сказать, подзабил. Собственно, глубоко нас ее и не спрашивали, мы были физматиками . Однако, если вдруг-внезапно все-таки возникнет необходимость, я-таки готов углубиться в эти химические дебри и рассказать вам что здесь к чему.

Таким образом, скорость движения электронов в проводнике с током равна

Подставим конкретные числа. Зададимся для определенностью плотностью тока в 5 А/мм 2 .

Все остальные числа у нас уже есть. Может возникнуть вопрос - а почему именно 5 А/мм 2 .

Все просто, господа. Люди не в первый год занимаются электроникой. Накоплен некоторый опыт в этой сфере, или, выражаясь языком науки, эмпирические данные. Так вот, эти эмпирические данные гласят, что допустимая плотность тока в медных проводах составляет, обычно 5-10 А/мм 2 . При большей плотности тока возможен недопустимый перегрев проводника. Однако, для дорожек на печатной плате эта величина значительно больше и составляет 20 А/мм 2 и даже более. Впрочем, это тема уже совсем другой беседы. Вернемся к нашей задаче, а именно, к вычислению скорости электронов в проводнике. Подставляя числа, получаем, что

Господа, расчет неопровержимо показывает, что электроны в проводнике с током движутся всего лишь со скоростью 0,37 миллиметра в секунду! Очень медленно. Правда следует помнить, что это не тепловое движение, а именно направленное. Тепловое движение намного, намного больше, порядка 100 км/с. Резонный вопрос - а почему же свет вспыхивает мгновенно, когда я поворачиваю выключатель? А помните, я говорил про некоторую принуждающую силу? Дело в ней! Но об этом - в следующей статье. Огромной вам всем удачи, и до новых встреч!

Вступайте в нашу

Электрическим током называют направленное движение заряженных частиц в определённом направлении по проводнику.

Ток в проводнике

Для того чтобы ток возник в проводнике, необходимо, чтобы в какой-то среде были свободные электрические заряды. Двигаться эти заряды заставляет некая сила F, равная величине заряда q, умноженной на напряжённость поля Е.

Направление движения положительных зарядов принимают за направление тока.

Электрическое поле существует, если разность потенциалов между любыми двумя точками проводника, находящегося в этом поле, не равна нулю.

Однако, в таком поле направленное движение электрических зарядов приведёт к тому, что потенциалы на концах проводника станут одинаковыми. Движение зарядов прекратится. Следовательно, исчезнет и электрическое поле. Чтобы поддержать существование электрического поля, необходимо устройство, которое называют источником тока. Источником тока могут быть батареи, аккумуляторы, электрогенераторы, солнечные батареи.

Постоянный и переменный ток

Постоянный ток

Постоянным называют ток, направление и величина которого не меняются с течением времени. График постоянного тока относительно оси времени представляет собой прямую линию.

Электрическое поле, с помощью которого создаётся постоянный ток в проводнике, называют стационарным.

Простейший источник постоянного тока – химический элемент (аккумулятор или гальванический элемент). Направление тока в таком источнике самопроизвольно меняться не может.

Переменный ток

Переменным называется ток, величина и направление которого, в отличие от постоянного тока, с течением времени меняются по определённой закономерности. Причём, эти изменения повторяются через определённые периоды времени.

Если построить график переменного тока, то мы увидим, что он имеет форму синусоиды.

Временной промежуток, в течение которого происходит полный цикл изменения тока, называется периодом . А число полных периодов в 1 секунду, называют частотой переменного тока . Максимальное значение тока во время полного периода называется амплитудным значением тока . Значение тока в любой выбранный момент времени называют мгновенным значением тока .

Источниками переменного тока являются генераторы переменного тока.

Для освещения и промышленных целей переменный ток вырабатывают мощными генераторами, которые приводятся в движение двигателями внутреннего сгорания, паровыми или водяными турбинами.

Сила тока

Силой тока называют величину, равную заряду, который протекает через поперечное сечение проводника в единицу времени.

В международной системе единиц (СИ) сила тока измеряется в амперах.

Для участка цепи сила тока по закону Ампера прямо пропорциональна напряжению U, приложенному к участку цепи, и обратно пропорциональна сопротивлению проводника этого участка R.

Эта формула справедлива для постоянного тока.

Силу тока измеряют с помощью специального прибора – амперметра.

Напряжение в сети переменного тока изменяется по гармоническому закону

U = U m cos ωt

Переменный электрический ток в проводнике возникает под действием переменного электрического поля. Частота и фаза колебаний переменного тока совпадают с частотой и фазой колебаний напряжения.

Мгновенное значение силы переменного тока выражается формулой

i = I m cos ωt

где i – мгновенное значение силы тока

I m - амплитудное значение силы тока

ω – угловая частота

ω = 2πf

f – частота переменного тока

Амплитудное значение силы тока равно I m = U m /R

Действующим значением силы переменного тока называется такое его значение, при котором средняя мощность в проводнике в цепи переменного тока равна мощности в этом же проводнике в цепи постоянного тока.

I Д = 1,44 I m

Практически всё электрооборудование промышленных предприятий, бытовые приборы питаются от сетей переменного тока.

Для подбора кабеля, сечения проводов, выключателей защиты, следует вычислить силу тока. Проводка, автоматы с неверно подобранными показателями опасны: может случиться замыкание и пожар.

Говоря об электроприборах, сети, прежде всего упоминают о напряжении. Его величина указывается в вольтах (В), обозначается U. Показатель напряжения зависит от нескольких факторов:

  • материала проводки;
  • сопротивления прибора;
  • температуры.

Один из главных показателей электричества - напряжение

Различают виды напряжения – постоянное и переменное. Постоянное, если на один конец цепи поступает отрицательный потенциал, на другой – положительный. Самый доступный пример постоянного напряжения – батарейка. Нагрузку подключают, соблюдая полярность, иначе можно повредить устройство. Постоянный ток невозможно без потерь передать на значительные расстояния.

Переменный ток возникает, когда постоянно меняется его полярность. Количество изменений называют частотой, измеряется в герцах. Переменные напряжения возможно передавать очень далеко. Используют экономически выгодные трехфазные сети: в них минимальные потери электроэнергии. Они выполнены четырьмя проводами: три фазных и нулевой. Если посмотреть на линию электропередач, увидим 4 провода между столбами. От них к дому подводят два – фазный ток 220 В. Если подключить 4 провода, потребитель получит линейный ток 380 В.

Характеристика электричества не ограничивается напряжением. Важна сила тока в амперах (А), обозначение – латинская I. В любом месте цепи она одинакова. Для измерения служат амперметр, миллиамперметр, мультиметр. Ток бывает очень большой, тысячи ампер, и маленький – миллионные части ампер. Малую силу измеряют миллиамперами.

Амперметр служит для измерения силы тока

Движение электричества по любому материалу вызывает сопротивление. Оно выражается омами (Ом), обозначается R или r. Сопротивление зависимо от сечения и материала проводника. Чтобы охарактеризовать сопротивление разных материалов, употребляется термин удельное сопротивление. Медь характеризуется меньшим сопротивлением, чем алюминий: 0,017 и 0,03 Ом соответственно. У короткого провода сопротивление меньше, чем у длинного. Толстый провод отличается от толстого меньшим сопротивлением.

Характеристика любого прибора содержит указания мощности (ватты (В) или киловатты (кВт). Мощность обозначают P, зависит от напряжения и тока. Из-за сопротивления проводки энергия частично теряется – от источника требуется ток больше необходимого.

Как рассчитать силу тока по закону Ома

При двух известных величинах всегда можно найти третью. Для вычислений наиболее часто пользуются законом Ома с тремя величинами: силой тока, напряженим, сопротивлением: I=U/R.

Он применяется для цепи с нагрузкой из ТЭНов, лампочек, резисторов, имеющих активное сопротивление.

Если имеются катушки, конденсаторы, это уже реактивное сопротивление, обозначают X. Катушки создают индуктивное (XL), конденсаторы – емкостное сопротивление (XC). Сила тока рассчитывается с применением формулы, в основе которой также закон Ома: I=U/X.

Прежде определяют индуктивное и емкостное сопротивления, они вместе составляют реактивное сопротивление (C+L).

Индуктивное вычисляется: XC=1/2πfC. Для расчета емкостного используем формулу XL=2πfL.

Прокладывая электропроводку, предварительно следует узнать силу тока. Ошибки чреваты неприятностями – проводка, розетки плавятся. Если он фактически превышает расчетный, проводка нагревается, плавится, происходит обрыв или замыкание. Ее приходится менять, но это не самое неприятное – возможен и пожар.

При монтаже проводки необходимо знать силу тока

Ток сети для практических потребностей находят, зная мощность приборов: I=P/U, где P – мощность потребителя. В реальности учитывается коэффициент мощности – cos φ. Для однофазной сети: I = P/(U∙cos φ),

трехфазной – I = P/(1,73∙U∙cos φ).

Для одной фазы U принимают 220, для трех – 380. Коэффициент большинства приборов 0,95. Если подключают электродвигатель, сварку, дроссель, коэффициент 0,8. Подставляя 0,95, для однофазной сети выходит:

I = P/209, трехфазной – I = P/624. Если коэффициент 0,8, для двух проводов: I = P/176, для четырех: I = P/526.

Трехфазный ток меньше втрое, нагрузка распределяется поровну между фазами. Подсчитывая нагрузку, предусматривают запас 5%, для двигателей, сварочных агрегатов – 20%.

Приборы иногда используют одновременно. Чтобы вычислить нагрузку, суммируют токи устройств. Подход возможен, если они имеют схожий коэффициент мощности. Для потребителей с разными коэффициентами используют средний показатель. Иногда к трехфазной системе подключают однофазные и трехфазные изделия. Вычисляя ток, складывают все нагрузки.

Ток, протекающий по проводке, нагревает ее. Степень нагрева зависит от его силы и сечения проводки. Правильно подобранный греется несильно. Если ток имеет большую силу, проводка недостаточное сечение, она сильно нагревается, изоляция плавится, возможен пожар. Для правильного подбора сечения пользуются таблицами ПУЭ.

Сечение провода и сила тока определяют степень нагрева проводки

Предположим, требуется подключить электрокотел 5 кВт. Используем медный трехжильный кабель в рукаве. Проводим вычисления: 5000/220 = 22,7. Подходящее значение в таблице 27 А, сечение 4 мм2, диаметр – 2,3 мм. Сечение всегда выбирают с небольшим запасом для полной гарантии. Теперь есть уверенность, что провода не перегреются, не загорятся.

Для защиты сети пользуются плавкими предохранителями. Они работают так, что при некоторой силе тока предохранитель плавится и разрывает цепь. Поэтому гвоздь или первый попавшийся медный провод вместо предохранителя использовать нельзя, когда-нибудь это приведет к серьезным проблемам. Если нужного предохранителя нет, используют медный провод подходящего диаметра, пользуясь таблицей.

Плавкие предохранители постепенно уходят, им на смену пришли автоматические выключатели. Выбрать их не так просто, как кажется. Допустим, проводка рассчитана на 22 А, ближайший автомат на 25 А. Значит, ставить его? Оказывается, нет. Обозначение С25 вовсе не значит, что при 26 амперах он разорвет цепь. Даже если нагрузка превысит значение в полтора раза, он моментально не отключит сеть. Нагреется и сработает минуты через две.

Ставить нужно автомат меньшего номинала. Ближайший – С16. Он может отключить сеть при 17 А и при 24, и никто не скажет, сколько времени пройдет. На срабатывание влияет много факторов. Устройство имеет две защиты – электромагнитную и тепловую. Электромагнитная защита отключает сеть за 0,2 секунды при значительной перегрузке.

Следует выбирать автомат, срабатывающий при возможно меньшей силе тока.

Еще один вид устройств отключения – УЗО. Он лишен тепловой и электромагнитной защиты. Указанный номинал служит, чтобы определять ток, который выдержит УЗО без повреждений. Так что логично после УЗО поставить автомат на максимальный ток. Существуют приборы защиты, представляющие симбиоз автомата с УЗО – дифавтоматы.

  • 2. Напряженность поля точечного заряда. Заряд, распределенный по объему, поверхности, линии
  • 3. Принцип суперпозиции. Электрическое поле диполя
  • 4. Силовые линии. Поток вектора напряженности электростатического поля. Теорема Гаусса для электростатического поля в вакууме
  • 5. Теорема Гаусса. Применение теоремы Гаусса для расчета электростатических полей
  • 6. Работа электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля.
  • 7. Потенциал электростатического поля. Потенциал поля точечного заряда. Разность потенциалов
  • 8. Связь напряженности и потенциала электростатического поля. Эквипотенциальные поверхности и линии напряженности
  • 9. Связь напряженности и потенциала электростатического поля. Примеры расчета разности потенциалов между точками поля по его напряженности.
  • 10. Диэлектрики в диэлектрическом поле. Поляризация диэлектриков и ее типы. Вектор поляризации. Относительная диэлектрическая проницаемость и диэлектрическая восприимчивость
  • 11. Вектор электрического смещения. Теорема Гаусса для диэлектриков
  • 12. Сегнетоэлектрики и их применение
  • 13. Проводники в электростатическом поле. Распределение зарядов в проводниках. Электроемкость уединенного проводника
  • 14. Конденсаторы. Электроемкость. Соединение конденсаторов
  • 15. Энергия проводника и конденсатора. Энергия электростатического поля
  • 16. Электрический ток. Сила тока. Плотность тока
  • 19. Обобщенный закон Ома
  • 21. Закон Био-Савра-Лапласа
  • 22. Действие магнитного поля на проводник с током
  • 23.Циркуляция вектора индукции магнитного поля
  • 28.Движение заряженных частиц в магнитном поле
  • 29. Магнитные моменты электронов и атомов
  • 30. Диамагнетики и парамагнетики. Ферромагнетики и их свойства.
  • 31.Явление электромагнитной индукции. Закон Фарадея
  • 32.Самоиндукция. Индуктивность
  • 33.Энергия магнитного поля, объемная плотность энергии
  • 34.Уравнения Максвелла для электромагнитного поля
  • 16. Электрический ток. Сила тока. Плотность тока

    Электрический ток - направленное движение электрически заряженных частиц под воздействием электрического поля.

    Сила тока (I) - скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.

    I=q/t, где I- сила тока, q - заряд, t - время.

    Единица измерения силы тока в системе СИ: [I]=1A (ампер)

    17. Источники тока. Эдс источника

    Источник тока - это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

    ЭДС - энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:

    Измеряется в вольтах (В).

    Источник ЭДС - двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия.

    18. Закон Ома : сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:

    -закон Ома в интегральной форме R – электрическое сопротивление проводника

    Величина, обратная сопротивлению, называется проводимостью. Величина, обратная удельному сопротивлению, называется удельной проводимостью: Единица, обратная Ом, называется Сименсом [См].

    - закон Ома в дифференциальной форме.

    19. Обобщенный закон Ома

    Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

    Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (Uab ), идеального источника ЭДС (Е ) и положительного направления тока (I ).

    Закон Джоуля-Ленца

    Выражение закона Джоуля - Ленца

    Интегральная форма закона

    Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля - Ленца можно записать в упрощенном виде:

    Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

    Эквивалентные выражения теплоты согласно закона Ома

    Словесное определение закона Джоуля - Ленца

    Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля - Ленца можно записать в упрощенном виде:

    20. Магни́тное по́ле - силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния ихдвижения; магнитная составляющаяэлектромагнитного поля

    Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментамиэлектроноватомах (и магнитными моментами другихчастиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

    Кроме этого, оно возникает в результате изменения во времени электрического поля.

    Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля). С математической точки зрения- векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

    Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

    Вместе, магнитное и электрическое поля образуют электромагнитное поле , проявлениями которого являются, в частности свет и все другие электромагнитные волны .

    Магнитное поле создаётся (порождается) током заряженных частиц или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)

    Графическое изображение магнитных полей

    Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.