Строение нейрона.

Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.

Развитие нейрона.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.



Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервная клетка - нейрон - является структурной и функциональной единицей нервной системы. Нейрон - клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам. Нейрон состоит из тела и отростков - коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону - от клетки.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ­ными .

В зависимости от числа и рас­положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со­стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото­ром протекает большинство син­тетических процессов, в частно­сти, синтез ацетилхолина. В теле клетки есть рибосомы, микротру­бочки (нейротрубочки) и другие органоиды. Нейроны формируют­ся из клеток-нейробластов, кото­рые еще не имеют выростов. От тела нервной клетки отходят ци­топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово­дящие импульсы от перикариона к другим клеткам или перифериче­ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо­собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах - синапсах. Вздутые окончания содержат мел­кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми­тохондрии (рис. 34). Разветвлен­ные отростки нервных клеток пронизывают весь организм жи­вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней­рона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.ru

Функции нейронов

Основная функция нейронов - обмен информации (нервными сигналами) между частями тела. Нейроны восприим­чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру­гим клеткам (нервным, мышечным, железистым). По нейронам прохо­дят электрические импульсы, и это делает возможной коммуни­кацию между рецепторами (клетками или органами, воспринимаю­щими раздражение) и эффекторами (тканями или органами, отвечаю­щими на раздражение, например мышцами).

Предполагается, что ЦНС человека состоит примерно из 10“ нейронов. Их форма и размеры разнообразны, однако все нейроны имеют некоторые общие структурные особенности (рис. 1.1). Внешнее строение нейрона - это сома (тело) и отростки: аксон и дендри- ты. Аксон - длинный отросток, проводящий возбуждение от тела клетки к другим нейронам или к периферическим органам. Аксон отходит от сомы в месте, которое называется аксонным холмиком. На протяжении нескольких десятков микрон аксон не имеет миели- новой оболочки. Этот участок аксона вместе с аксонным холмиком называют начальным сегментом.

Схема 1. Отделы нервной системы

Далее аксон может быть покрыт миелиновой оболочкой. Мие- линовая оболочка состоит из белково-липидного комплекса - миелина и образуется вследствие многократного обертывания аксона швановскими клетками (разновидность клеток олигодендроглии).

По ходу миелиновой оболочки встречаются узловые перехваты Ранвье, соответствующие границам между шва- новскими клетками. Миели- новая оболочка выполняет изолирующую, опорную, барьерную и, по-видимому, трофическую и транспортную функции. Скорость проведения импульсов в миелинизи- рованных (мякотных) волокнах выше, чем в немиелини- зированных (безмякотных), поскольку распространение нервного импульса в них происходит скачкообразно от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с мембраной аксона. Эволюционный смысл миелиновой оболочки состоит в экономии метаболической энергии нейрона. Мякотные волокна входят в состав чувствительных и двигательных нервов, снабжающих органы чувств и скелетную мускулатуру, принадлежат в основном к симпатическому отделу вегетативной нервной системы.

Рис. 1.1.

Мотонейрон спинного мозга. Указаны функции отдельных структурных элементов нейрона (по Р. Эккерт, Д. Рэнделл,

Дж. Огастин, 1991)

Короткие отростки (дендриты) нейрона ветвятся вокруг тела клетки. Их функция состоит в восприятии нервных импульсов, приходящих от других нейронов, и последующем проведении возбуждения к соме. Тела нейронов (сомы) в ЦНС сосредоточены в сером веществе больших полушарий головного мозга, в подкорковых ядрах, в стволе мозга, в мозжечке и в спинном мозге. Безмякотные волокна иннервируют мускулатуру, также они входят в состав вегетативной нервной системы. Миелинизированные волокна образуют белое вещество различных отделов спинного и головного мозга. Форма и размеры тел нейронов и их отростков даже в одних и тех же отделах ЦНС могут существенно различаться. Так, диаметр клеток-зерен коры больших полушарий не превышает 4 мкм, а диаметр гигантских пирамидных клеток в коре больших полушарий или в передних рогах спинного мозга может колебаться в пределах от 50 до 100 мкм и более.

Ход, длина и ветвистость отростков нервных клеток также очень варьируют. Так, аксоны большинства клеток имеют ветвления только на уровне начального сегмента (коллатерали аксона) и в конце при подходе к другой клетке или иннервируемому органу. В основной своей части они не ветвятся, в отличие от дендри- тов, ветвящихся очень интенсивно и в основном ближе к телу клетки. Длина аксонов различных клеток может измеряться как микронами (в сером веществе больших полушарий), так и десятками сантиметров (в проводящих путях спинного мозга).

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на следующие типы (рис. 1.2):

  • униполярные нейроны имеют один отросток; отмечены у человека в период раннего эмбрионального развития, а в постнатальном онтогенезе они встречаются лишь в мезэнцефалическом ядре тройничного нерва, обеспечивая проприоцептивную чувствительность жевательных мышц;
  • биполярные нейроны имеют два отростка (аксон и дендрит), обычно отходящие от различных полюсов клетки. У человека такой тип нейронов встречается обычно в периферических отделах слуховой, зрительной и обонятельной сенсорных систем (биполярные клетки спирального ганглия, сетчатка глаза). Биполярные клетки дендритом связаны с рецептором, а аксоном - с нейроном вышележащего уровня. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны. Аксон и дендрит этих клеток отходят от сомы в виде Т-образного выроста, который далее делится на два отростка. Один из них (дендрит) направляется к рецепторам, а второй (аксон) - в центральную нервную систему. Такой тип клеток отмечен в сенсорных спинальных и краниальных ганглиях и обеспечивает восприятие температурной, проприоцептивной, болевой, тактильной, барорецептивной и вибрационной чувствительности;
  • мультиполярные нейроны имеют один аксон и более двух дендритов. Они широко распространены в нервной системе человека.

Согласно функциям, клетки ЦНС разделяют на афферентные (чувствительные), эфферентные (эффекторные), вставочные (промежуточные) нейроны.

Рис. 1.2. Виды нейронов в зависимости от количества отростков: 1 -униполярный; 2 - биполярный; 3 - мультиполярный;

4 - псевдоуниполярный

Сома афферентных нейронов имеет простую округлую форму с одним отростком, который Т-образно делится на два волокна. Одно волокно отправляется на периферию и образует там чувствительные окончания (в коже, мышцах, сухожилиях), второе идет в ЦНС (в центры спинного мозга или мозгового ствола), где ветвится на окончания, которые заканчиваются на других клетках. Периферический отросток - это, скорее всего, видоизмененный дендрит, а тот отросток, который направлен в ЦНС - аксон. Сома чувствительного нейрона расположена вне ЦНС в спинномозговых ганглиях или в ганглиях черепно-мозговых нервов. К чувствительным нейронам относят некоторые нейроны в ЦНС, которые получают импульсы не непосредственно от рецепторов, а через другие, ниже расположенные нейроны, примером могут служить нейроны зрительного бугра.

Строение эфферентных нейронов аналогично строению афферентных. Однако через их аксоны осуществляется проведение возбуждения на периферию. Те из эфферентных нейронов, которые образуют двигательные нервные волокна, идущие к скелетным мышцам, называют мотонейронами. Их тела лежат в среднем, продолговатом мозге, в передних рогах спинного мозга. Многие эфферентные нейроны передают возбуждение не непосредственно на периферию, а через ниже расположенные клетки. Например, эфферентные нейроны больших полушарий или красного ядра среднего мозга, чьи импульсы идут к мотонейронам спинного мозга.

Вставочные (промежуточные) нейроны - особый тип нейронов. Главное их отличие от афферентных и эфферентных нейронов заключается в том, что они находятся внутри ЦНС и их отростки не покидают ее пределов. Эти нейроны не устанавливают непосредственной связи с чувствительными или эффекторными структурами. Они как бы вставлены между чувствительными и двигательными клетками и объединяют их между собой, иногда через очень длинные цепочки переключений. Разнообразие их форм и размеров велико, но в целом их строение соответствует строению афферентных и эфферентных нейронов. Различия определяются в основном формой сомы, а также длиной и степенью разветвленности отростков. Некоторые классификации включают до 10 и более видов вставочных нейронов. Согласно этим характеристикам выделяют пирамидные, звездчатые, корзинчатые, веретенообразные, полиморфные нейроны, клетки-зерна и т. д.

Морфологическая поляризация нейронов (дендрит - сома - аксон) связана с их функциональной поляризацией. Она проявляется в том, что только аксон клетки имеет на своих разветвлениях структуры, предназначенные для передачи активности на другие клетки. На поверхности сомы и дендритов таких структур нет. Поэтому в системе связанных друг с другом нейронов возбуждение передается только в одном направлении через отростки их нейронов.

Аксоны каждого нейрона, подходя к другим нервным клеткам, ветвятся, образуя многочисленные окончания на дендритах этих клеток, на их телах и на конечных разветвлениях - герминалях аксонов. На теле крупной пирамидной клетки коры больших полушарий может располагаться до тысячи нервных окончаний, образованных нервными отростками других нейронов, а одно нервное волокно может образовывать до 10 тысяч таких контактов на многих нервных клетках. С помощью метода электронной микроскопии исследователи детально изучили области связи между нервными клетками (межклеточные контакты), еще в 1897 г. названные Ч. Шер- рингтоном синапсами (синаптическими соединениями).

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами. Это взаимодействие представляет собой набор различных сигналов, передаваемых между нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов. Ионы генерируют электрический заряд (потенциал действия), который движется по телу нейрона.

Важное значение для науки имело изобретение метода Гольджи в 1873 году, позволявшего окрашивать отдельные нейроны . Термин «нейрон» (нем. Neuron ) для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году .

Энциклопедичный YouTube

    1 / 5

    ✪ Межнейронные химические синапсы

    ✪ Нейроны

    ✪ Тайна мозга. Вторая часть. Реальность во власти нейронов.

    ✪ Как Спорт Стимулирует Рост Нейронов в Мозге?

    ✪ Строение нейрона

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Строение нейронов

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя . Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами , аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии .(Нейроглия , или просто глия (от др.-греч. νεῦρον - волокно, нерв + γλία - клей), - совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10-50 раз больше, чем нейронов.)

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Механизм создания и проведения потенциала действия

В 1937 году Джон Захари Младший определил что гигантский аксон кальмара может быть использован для изучения электрических свойств аксонов. Аксоны кальмара были выбраны из-за того что они намного крупнее человеческих. Если вставить внутрь аксона электрод то можно замерить его мембранный потенциал .

Мембрана аксона содержит в себе потенциал-зависимые ионные каналы . Они позволяют аксону генерировать и проводить по своему телу электрические сигналы называемые потенциалами действия. Эти сигналы образуются и распространяются благодаря электрически заряженным ионам натрия (Na+),калия (K+), хлора (Cl-),кальция (Ca2+).

Давление,растяжение,химические факторы или изменение мембранного потенциала могут активировать нейрон. Происходит это вследствие открытия ионных каналов которые позволяют ионам пересекать мембрану клетки и соответственно изменять мембранный потенциал.

Тонкие аксоны расходуют меньше энергии и метаболических веществ для проведения потенциала действия,но толстые аксоны позволяют проводить его быстрее.

Для того чтобы проводить потенциалы действия более быстро и менее энергозатратно нейроны могут использовать для покрытия аксонов специальные глиальные клетки называемые олигодендроцитами в ЦНС или шванновскими клетками в переферической нервной системе. Эти клетки покрывают аксоны не полностью, оставляя промежутки на аксонах открытые внеклеточному веществу. В этих промежутках повышенная плотность ионных каналов.Они называются перехватами Ранвье . Через них и проходит потенциал действия посредством электрического поля между промежутками.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях , не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге . Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи , аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов :

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Вопрос о делении нейронов в настоящее время остаётся дискуссионным. По одной из версий нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. Первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение, которое прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии , микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза , о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Свойства и Функции нейронов

Свойства:

  • Наличие трансмембранной разницы потенциалов (до 90 мВ), наружная поверхность электроположительна по отношению к внутренней поверхности.
  • Очень высокая чувствительность к некоторым химическим веществам и электрическому току.
  • Способность к нейросекреции , то есть к синтезу и выделению особых веществ (нейромедиаторов), в окружающую среду или синаптическую щель.
  • Высокое энергопотребление , высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основных источников энергии-глюкозы и кислорода, необходимых для окисления.

Функции:

  • Приёмная функция (синапсы -точки контакта, от рецепторов и нейронов получаем информацию в виде импульса).
  • Интегративная функция (обработка информации, в результате на выходе нейрона формируется сигнал, несущий информацию всех суммированных сигналов).
  • Проводниковая функция (от нейрона по аксону идет информация в виде электрического тока к синапсу).
  • Передающая функция (нервный импульс, достигнув окончание аксона , который уже входит в структуру синапса, обуславливает выделение медиатора-непосредственного передатчика возбуждения к другому нейрону или исполнительному органу).

Клетки в организме человека дифференцированы в зависимости от видовой принадлежности. По сути, они являются структурными элементами различных тканей. Каждая максимально приспособлена к определенному виду деятельности. Строение нейрона является ярким тому подтверждением.

Нервная система

Большинство клеток организма имеют сходное строение. У них компактная форма, заключенная в оболочку. Внутри ядро и набор органелл, выполняющих синтез и обмен необходимых веществ. Однако строение и функции нейрона имеют отличия. Он является структурной единицей нервной ткани. Эти клетки обеспечивают связь между всеми системами организма.

Основу ЦНС составляют головной и спинной мозг. В двух этих центрах выделяют серое и белое вещество. Различия связаны с выполняемыми функциями. Одна часть получает сигнал от раздражителя и обрабатывает его, а другая отвечает за проведение необходимой ответной команды. За пределами главных центров нервная ткань образует пучки скоплений (узлы или ганглии). Они ветвятся, разводя проводящую сигналы сеть по всему организму (периферическая нервная система).

Нервные клетки

Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) - он один, и его длина в отдельных структурах может достигать 1 метра.

Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор - дендрит - тело клетки (сома) - аксон - реагирующий орган или ткань.

Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.

От сомы клетки (основы) в большинстве случаев отходит несколько толстых ответвлений (дендритов). Они не имеют четкой границы с телом и покрыты общей мембраной. По мере отдаления стволы становятся тоньше, происходит их ветвление. В итоге самые тонкие их части имеют вид заостренных нитей.

Особое строение нейрона (тонкий и длинный аксон) предполагает необходимость защиты его волокна на всей протяженности. Поэтому сверху он покрыт оболочкой из шванновских клеток, образующих миелин, с перехватами Ранвье между ними. Такая структура обеспечивает дополнительную защиту, изолирует проходящие импульсы, дополнительно питает и поддерживает нити.

Аксон берет свое начало с характерной возвышенности (холмика). Отросток в итоге также ветвится, но это происходит не по всей его протяженности, а ближе к окончанию, в местах соединения с другими нейронами или с тканями.

Классификация

Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.

По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и - как результат - боль, и полимодальные. Это более сложная структура - полимодальные нейроны (специфическая и неоднозначная реакция).

Особенности, строение и функции нейрона

Поверхность мембраны нейрона покрыта маленькими выростами (шипами) для увеличения контактируемой зоны. Они в общей сложности могут занимать до 40% площади клетки. Ядро нейрона, как и у других видов клеток, несет в себе наследственную информацию. Нервные клетки не делятся митозом. Если связь аксона с телом будет разорвана, отросток отмирает. Однако если сома не была повреждена, она способна сгенерировать и вырастить новый аксон.

Хрупкое строение нейрона предполагает наличие дополнительной «опеки». Защитные, опорные, секреторные и трофические (питание) функции обеспечивает нейроглия. Ее клетки заполняют все пространство вокруг. До определенной степени она способствует восстановлению нарушенных связей, а также борется с инфекциями и вообще «заботится» о нейронах.

Клеточная мембрана

Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.

Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды - это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.