Характеристика неметаллов в периодической системе. Неметаллы

§ 12. Элементы-неметаллы в периодической системе Д.И. Менделеева и в природе

В процессе изучения химии вы уже ознакомились со многими неметаллическими элементами и их соединениями. Наиболее известные вам неметаллы - водород, кислород и их уникальное соединение - вода. В 8 классе на примере VII группы главной подгруппы периодической системы вы ознакомились с семейством неметаллических элементов - галогенами, с их свойствами. В этом разделе вы получите целостные представления об элементах-неметаллах. Учитывая, что вы имеете некоторый запас знаний о них, умеете использовать периодическую систему Д.И. Менделеева, мы изменим привычный порядок изложения и пойдем в изучении неметаллов не от частного к общему, а, наоборот, от их общих свойств к ознакомлению с их группами, а затем и с конкретными представителями групп неметаллов. Такой подход называют дедуктивным .

Рассмотрим положение элементов-неметаллов в периодической системе. Уточним вначале их место в периодах . Элементы-неметаллы находятся в правом верхнем углу периодической системы, занимая большую часть малых периодов и размещаясь в конце нечетных рядов больших периодов. С увеличением порядковых номеров неметаллические свойства этих элементов усиливаются. Причину следует искать в изменении электронных структур их атомов: с увеличением порядкового номера их внешний электронный слой последовательно увеличивается на один p-электрон, от p 1 до p 6 , за исключением элементов первого периода Н- Не, у которых электроны заполняют лишь ls-орбиталь (табл. 9).

Обратите внимание, что у атомов первых элементов-неметаллов второго периода (В, С, N) число неспаренных p-электронов нарастает, достигая максимума у азота, а затем уменьшается. У неона, завершающего второй период, все электроны внешнего слоя (валентные электроны) спарены. Подобное строение имеют и другие атомы элементов, завершающих периоды (Ar, Кr, Хе, Rn), у которых все S- и р-орбитали внешнего слоя заняты спаренными электронами, образующими устойчивую восьмиэлектронную структуру ns 2 np 6 . При обычных условиях их простые вещества, как правило, не вступают в химические реакции и представляют собой одноатомные газы. Поэтому их часто называют инертными газами или благородными газами. Последнее название более целесообразно, так как известны некоторые соединения этих элементов (например, XeO 4 , RnF 6 и др.).

Итак, элементы-неметаллы расположены в IIIA-VIIIA-группах периодической системы.

Вместе с тем не все A-группы периодической системы состоят из элементов-неметаллов. Их число в главной подгруппе возрастает с увеличением ее номера. Так, в IIIA-группе находится только один элемент-неметалл (бор), в IVA-группе их два (углерод и кремний), в VA-группе - три элемента и т. д. В VIIA-группе уже все элементы - неметаллы. Это известные вам галогены. VTIIA-группу занимают благородные газы. Их также относят к неметаллам.

Проведенный анализ положения элементов-неметаллов в периодической системе Д.И. Менделеева позволяет сделать следующие выводы .

Рассмотрим периодическое изменение некоторых свойств элементов-неметаллов на примере третьего периода (табл. 10).

Для этих элементов характерны газообразные водородные соединения и высшие кислородные соединения кислотного характера. Формы и свойства водородных и высших кислородных соединений зависят от характерных степеней окисления данного элемента.

Анализ свойств элементов-неметаллов по их положению в главных подгруппах.

У всех элементов-неметаллов одной A-группы одинаковое число внешних электронов при разном количестве электронных слоев в атомах. Число электронов внешнего слоя у атомов элементов одной A-группы равно номеру группы, в которой они располагаются. Их числу соответствует и высшая степень окисления элемента в кислородных соединениях, а также форма последних.

Рассмотрим закономерности изменения некоторых свойств элементов- неметаллов на примере уже изученной вами подгруппы галогенов (табл. 11).

СВОЙСТВА ЭЛЕМЕНТОВ И ПЕРИОДИЧЕСКАЯ СИСТЕМА

Все элементы в Периодической системе делят условно на металлы и неметаллы. К неметаллическим элементам относятся:

Не, Nе, Аr, Кr, Хе, Rn, F, С1, Вr, I, Аt, О, S, Sе. Те, N, Р, Аs, С, Si, В, Н

Все остальные элементы считаются металлическими.

Простые вещества (элементы в свободном виде) также подразделяют на металлы и неметаллы, основываясь на их физико-химических свойствах. Так, по физическим свойствам, например по электронной проводимости, бор это неметалл, а медь - металл, хотя и возможны исключения (графит).

В Периодической системе неметаллы - это элементы главных групп (А-групп), начиная с IIIА группы (бор); остальные элементы А-групп и все элементы Б- групп - металлы. В главных группах металлические свойства отчетливее выражены для более тяжелых элементов, причем в 1А-группу входят только металлы, а в VПА и VIIIА группы - только неметаллы.

В главных группах металлические свойства элементов увеличиваются, а неметаллические свойства уменьшаются с возрастанием порядкового номера элемента.

В периодах для элементов главных групп металлические свойства уменьшаются, а неметаллические свойства увеличиваются с возрастанием порядкового номера, элемента.

Отсюда следует, что самый типичный неметаллический элемент - это фтор, самый типичный металлический элемент - это франций.

В Периодической системе отчетливо видны естественные границы, относительно которых наблюдается изменение свойств элементов. 1А группа содержит типичные металлы, элементы VIIIА группы (благородные газы) - типичные неметаллы, промежуточные группы включают неметаллы «вверху» таблицы элементов и металлы «внизу» таблицы элементов. Другая граница между металлами и неметаллами соответствует элементам Ве - А1-Gе - Sb - Ро (диагональная граница). Элементы самой этой границы и примыкающие к ней обладают одновременно и металлическими, и неметаллическими свойствами, этим элементам свойственно амфотерное поведение. Простые вещества этих элементов могут встречаться как в виде металлических, так и неметаллических модификаций (аллотропных форм).

В качестве меры металлического и неметаллического характера элементов можно принять энергию ионизации их атомов. Энергия ионизации - это энергия, которую необходимо затратить для полного удаления одного электрона из атома. Обычно металлы обладают относительно низкой энергией ионизации (496 кДж/моль для Nа, 503 кДж/моль для Ва), а неметаллы - высокой энергией ионизации (1680 кДж/моль для F, 1401 кДж/моль для N). Атомам элементов, проявляющих амфотерное поведение (Ве, А1, Ge, Sb, Ро и др.), отвечают промежуточные значения энергии ионизации (762 кДж/моль для Ge, 833 кДж/моль для Sb), а благородным газам - наивысшие значения (2080 кДж/моль для Nе, 2372 кДж/моль для Не). В пределах группы Периодической системы значения энергии ионизации атомов уменьшаются с возрастанием порядкового номера элемента, т. е. при увеличении размеров атомов. Электроположительные и электроотрицательные элементы. В соответствии со склонностью атомов элементов образовывать положительные и отрицательные одноатомные ионы, различают электроположительные и электроотрицательные элементы.



Атомы электроотрицательных элементов обладают высоким сродством к электрону. Атомы таких элементов очень прочно удерживают собственные электроны и имеют тенденцию принимать дополнительные электроны в химических реакциях. Атомы электроположительных элементов обладают низким сродством к электрону. Атомы таких элементов слабо удерживают собственные электроны и имеют тенденцию терять эти электроны в химических реакциях.

Самыми электроположительными элементами являются типичные металлы (элементы 1А группы), а самыми электроотрицательными элементами - типичные неметаллы (элементы VПА группы).

Электроположительный характер элементов увеличивается при переходе сверху вниз в пределах главных групп я уменьшается при переходе слева направо в пределах периодов. Электроотрицательный характер элементов уменьшается при переходе сверху вниз в пределах главных групп и увеличивается при переходе слева направо в пределах периодов.

Все известные на сегодняшний день химические элементы имеют общий "дом" - периодическую систему. Однако располагаются они там не как придется, а в строгом порядке, определенной последовательности. Одним из главных критериев, по которым классифицируются все атомы, являются характеристики.

Неметаллов и представителей металлических элементов - это основа, на которой базируется не только их разделение в пределах таблицы, но и области применения человеком. Познакомимся ближе с неметаллами и их характеристикой.

Положение в периодической системе

Если рассмотреть систему химических элементов в целом, то можно определить место положения неметаллов так:

  1. Верхний правый угол.
  2. Выше условной граничной диагонали от бора до астата.
  3. Главные подгруппы с IV-VIII группу.

Очевидно, что количество их явно уступает таковому у металлов. По численному соотношению это будет примерно 25/85. Однако данный факт нисколько не уменьшает их значимости и важности. При этом физические свойства неметаллов гораздо более разнообразные, чем таковые у их "оппонентов".

Разновидности простых соединений неметаллов

Определяют несколько основных категорий, к которым относятся все известные рассматриваемые элементы. Физические свойства - неметаллов - позволяют разделить их на:

  • твердые;
  • газообразные;
  • жидкие.

При этом есть и особая группа элементов - благородные газы. По своим характеристикам они не относятся ни к одной из обозначенных категорий.

Газообразные неметаллы

Таковых достаточно много. К ним относятся такие простые вещества, как:

  • кислород;
  • азот;
  • галогены хлор и фтор;
  • водород;
  • белый фосфор;
  • озон.

Однако такое возможно при условии стандартных параметров окружающей среды. Кристаллическая решетка этих представителей - молекулярная, тип химической связи в молекулах - ковалентная неполярная. Физические свойства группы схожи. Они обладают:

  • сжимаемостью;
  • способностью безграничного смешения между собой;
  • расширяемостью;
  • заполняют весь объем сосуда.

Среди приведенных веществ ядовитыми являются два - хлор и Очень опасные, удушающие соединения. При этом хлор - желто-зеленый газ, фосфор - белый, легко воспламеняющийся на воздухе.

Кислород и озон - хорошие окислители. Первый - постоянный компонент воздуха, необходимый для жизни большинства организмов. Второй образуется после грозы при действии электрических разрядов молнии на кислород воздуха. Имеет приятный запах свежести.

Жидкие неметаллы

Физические свойства неметаллов этой группы можно описать, дав характеристику всего лишь одному веществу - брому. Поскольку только он является жидкостью при обычных условиях среди всех представителей рассматриваемой группы элементов.

Это темно-бурая жидкость, достаточно тяжелая, которая является сильнейшим ядом. Даже пары брома способны вызывать сложные, не заживающие долгое время язвы на руках. Запах его очень неприятный, за что элемент и получил свое название (в переводе bromos - зловонный).

По своим химическим характеристикам бром является окислителем для металлов и восстановителем для более сильных неметаллов, чем он сам.

Несмотря на такие особенности, ионы брома обязательно должны присутствовать в организме человека. Без него возникают заболевания, связанные с гормональными нарушениями.

Твердые представители

К простым веществам этой категории относится большинство неметаллов. Это:

  • все углерода;
  • красный и черный фосфор;
  • сера;
  • кремний;
  • мышьяк;
  • одна из модификаций олова.

Все они имеют достаточно твердые, но хрупкие вещества. Черный фосфор - жирное на ощупь сухое соединение. Красный же - пастообразная масса.

Самым твердым из всех обозначенных веществ является алмаз - разновидность углерода. Физические и химические свойства неметаллов данной группы очень разные, так как в таблице располагаются некоторые из них далеко друг от друга. Значит, степени окисления, проявляемая химическая активность, характер соединений - все эти показатели будут варьироваться.

Интересным неметаллом в твердом состоянии является йод. Его кристаллы блестят на срезе, проявляя тем самым схожесть с металлами. Это не удивительно, ведь он располагается практически на границе с ними. Также есть у этого вещества особое свойство - сублимация. При нагревании йод переходит в газообразное состояние, минуя жидкое. Пары его имеют ярко-фиолетовую насыщенную окраску.

Физические свойства неметаллов: таблица

Чтобы проще обозначить, что собой представляют неметаллы, лучше выстроить обобщающую таблицу. Она покажет, в чем заключаются общие физические свойства неметаллов, а в чем проявляются их различия.

Физическое свойство Пример неметалла
при обычных условиях Характерны все три: твердое (сера, углерод, кремний и прочие), газообразное (например, галогены), жидкое (бром)
Электро- и теплопроводность Не характерна ни для чего, кроме углерода и черного фосфора
Окраска простого вещества Очень разнообразная. Пример: бром - красный, сера - желтая, кристаллы йода - темно-фиолетовые, углерод в виде графита - темно-серый, хлор - желто-зеленый и так далее
Металлический блеск Характерен только для кристаллического йода
Ковкость и пластичность Полностью отсутствует. Все твердые вещества - хрупкие, кроме алмаза и некоторых форм кремния

Очевидно, что в физических свойствах неметаллов больше преобладают различия, нежели сходства. Если для металлов можно выделить несколько характеристик, под которые будет подпадать каждый из них, то для рассмотренных нами элементов такое невозможно.

1. Положение металлов в таблице элементов

Металлы располагаются в основном в левой и нижней части ПСХЭ. К ним относятся:


2. Строение атомов металлов

У атомов металлов на наружном энергоуровне обычно 1-3 электрона. Их атомы обладают большим радиусом и легко отдают валентные электроны, т.е. проявляют восстановительные свойства.

3. Физические свойства металлов



Изменение электропроводности металла при его нагревании и охлаждении

Металлическая связь – это связь, которую осуществляют свободные электроны между катионами в металлической кристаллической решётке .

4. Получение металлов


1. Восстановление металлов из оксидов углем или угарным газом

Mе x O y + C = CO 2 + Me или Mе x O y + CO = CO 2 + Me

2. Обжиг сульфидов с последующим восстановлением

1 стадия – Mе x S y +O 2 =Mе x O y +SO 2

2 стадия -Mе x O y + C = CO 2 + Me или Mе x O y + CO = CO 2 + Me

3 Алюминотермия (восстановление более активным металлом)

Mе x O y + Al = Al 2 O 3 + Me

4. Водородотермия - для получения металлов особой чистоты

Mе x O y + H 2 = H 2 O + Me

5. Восстановление металлов электрическим током (электролиз)

1) Щелочные и щелочноземельные металлы получают в промышленности электролизом расплавов солей (хлоридов):

2NaCl – расплав, электр. ток. → 2 Na + Cl 2

CaCl 2 – расплав, электр. ток. Ca + Cl 2

расплавов гидроксидов:

4NaOH – расплав, электр. ток. 4 Na + O 2 + 2 H 2 O

2) Алюминий в промышленности получают в результате электролиза расплава оксида алюмини я в криолите Na 3 AlF 6 (из бокситов):

2Al 2 O 3 – расплав в криолите, электр. ток. 4 Al + 3 O 2

3) Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:

2CuSO 4 +2H 2 O – раствор, электр. ток. 2 Cu + O 2 + 2 H 2 SO 4


5. Нахождение металлов в природе

Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средн ей активности – в виде оксидов, сульфидов (Fe 3 O 4 , FeS 2 )

3. Благородные – в свободном виде (Au , Pt , Ag )

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Общие химические свойства металлов представлены в таблице:



ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Закончить уравнения практически осуществимых реакций, назвать продукты реакции

Li+ H 2 O =

Cu + H 2 O =

Al + H 2 O =

Ba + H 2 O =

Mg + H 2 O =

Ca + HCl=

Na + H 2 SO 4 (К )=

Al + H 2 S=

Ca + H 3 PO 4 =

HCl + Zn =

H 2 SO 4 (к )+ Cu=

H 2 S + Mg =

HCl + Cu =

HNO 3 (K)+ С u =

H 2 S + Pt =

H 3 PO 4 + Fe =

HNO 3 (p)+ Na=

Fe + Pb(NO 3) 2 =

№2. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):

Al + O 2 =

Li + H 2 O =

Na + HNO 3 (k) =

Mg + Pb(NO 3) 2 =

Ni + HCl =

Ag + H 2 SO 4 (k) =

№3. Вставьте вместо точек пропущенные знаки (<, > или =)

Заряд ядра

Li…Rb

Na…Al

Ca…K

Число энергетических уровней

Li…Rb

Na…Al

Ca…K

Число внешних электронов

Li…Rb

Na…Al

Ca…K

Радиус атома

Li…Rb

Na…Al

Ca…K

Восстановительные свойства

Li…Rb

Na…Al

Ca…K

№4. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):

K+ O 2 =

Mg+ H 2 O =

Pb+ HNO 3 (p) =

Fe+ CuCl 2 =

Zn + H 2 SO 4 (p) =

Zn + H 2 SO 4 (k) =

№5. Решите тестовые задания

1.Выберите группу элементов, в которой находятся только металлы:

А ) Al, As, P; Б ) Mg, Ca, Si; В ) K, Ca, Pb

2. Выберите группу, в которой находятся только простые вещества – неметаллы:

А ) K 2 O, SO 2 , SiO 2 ; Б ) H 2 , Cl 2 , I 2 ; В )Ca, Ba, HCl;

3. Укажите общее в строении атомов K и Li:

А) 2 электрона на последнем электронном слое;

Б) 1 электрон на последнем электронном слое;

В) одинаковое число электронных слоев.

4. Металлический кальций проявляет свойства:

А) окислителя;

Б) восстановителя;

В) окислителя или восстановителя в зависимости от условий.

5. Металлические свойства натрия слабее, чем у –

А) магния;Б) калия;В) лития.

6. К неактивным металлам относятся:

А) алюминий, медь, цинк;Б) ртуть, серебро, медь;

В) кальций, бериллий, серебро.

7. Какое физическое свойство не является общими для всех металлов:

А) электропроводность,Б) теплопроводность,

В) твердое агрегатное состояние при нормальных условиях,

Г) металлический блеск

Часть В. Ответом к заданиям этой части является набор букв, которые следует записать

Установите соответствие.

С увеличением порядкового номера элемента в главной подгруппе II группы Периодической системы свойства элементов и образуемых ими веществ изменяются следующим образом:


В результате изучения данной главы студент должен: знать

  • положение неметаллов в периодической системе;
  • биологическую роль неметаллов;
  • применение неметаллов в медицине и фармации; уметь
  • характеризовать особенности строения атомов неметаллических элементов;
  • описывать важнейшие способы получения неметаллов;
  • проводить реакции обнаружения основных соединений неметаллов; владеть
  • навыками написания электронных конфигураций и электронных структур атомов-неметаллов;
  • навыками составления уравнений реакций, характеризующих химические свойства неметаллов, а также их водородных и кислородных соединений.

При изучении структуры периодической системы и расположения в ней химических элементов легко заметить, что металлические элементы отделены от неметаллов условной диагональной линией, проходящей от бора к астату. Наиболее типичные неметаллы занимают верхнюю правую часть таблицы и по периодам распределяются следующим образом: в первом периоде - два (Н, Не); во втором - шесть (В, С, N, О, F, Ne); в третьем - пять (Si, Р, S, С1, Аг); в четвертом - четыре (As, Se, Вг, Кг); в пятом - три (Те, I, Хе); в шестом - два (At, Rn).

Экспериментальные исследования, полученные в Объединенном институте ядерных исследований (Дубна), указывают на то, что 118-й элемент имеет восьмиэлектрониую наружую оболочку, но отличается от благородных газов тем, что это металл.

Неметаллы располагаются в 13-18-й группах, и электронные конфигурации их наружных оболочек от В к Ne изменяются в последовательности ns 2 np ] ns 2 np 6 , т.е. неметаллы 13-18-й групп относятся к элементам р- семейства (рис. 12.1).

Чем правее расположен неметалл, тем выше энергия ионизации, тем больше его сродство к электрону. Поэтому атомы неметаллов проявляют тенденцию к формированию электронной оболочки с конфигурацией благородного газа, что реализуется возрастающей слева направо способностью к присоединению электронов. Внутри групп эти закономерности проявляются снизу вверх, поэтому наиболее электроотрицательным элементом является фтор.

Рис. 12.1.

У неметаллов степень окисления в водородных соединениях может быть определена по разности (Г - 18), где Г - номер группы, в которой располагается данный неметалл. Следовательно, каждый атом неметалла может соединяться с (18 - Г) атомами водорода. Так, один атом углерода (14-я группа) может соединиться с четырьмя атомами водорода, поскольку степень окисления углерода равна (14 - 18) = - 4. Высшая положительная степень окисления неметаллов обычно равна +(Г - 10). Например, степень окисления хлора в НСЮ 4 равна +7.

Семь неметаллических элементов существуют в виде двухатомных молекул: пять из них при нормальных условиях представляют собой газы - водород, азот, кислород, фтор и хлор; бром - жидкость, а иод - кристаллическое вещество, способное возгоняться, не плавясь.

Остальные неметаллы при нормальных условиях образуют кристаллы с различной структурой (например, углерод в виде алмаза) или являются газообразными (благородные газы).

Неметаллические элементы в природе встречаются главным образом в виде соединений, что объясняется их высокой химической активностью. Кислород, азот, сера, углерод и благородные газы встречаются в виде простых веществ.

Обобщая физические свойства неметаллов, следует отметить, что они не имеют характерного блеска и различно окрашены; в кристаллическом состоянии отличаются структурой и прочностью кристаллов; плохо проводят теплоту и электрический ток.

Оксиды большинства неметаллов являются ковалентными соединениями и по своим химическим свойствам относятся к кислотным оксидам.

При получении неметаллических элементов в виде простых веществ исходят прежде всего от их химической активности. Общее в этих методах заключается в том, что в большинстве случаев в их основе лежат окислительно-восстановительные реакции.

Химическая активность неметаллов варьирует в широких пределах.

За исключением благородных газов, неметаллы образуют летучие водородные соединения, которые получают либо прямым взаимодействием простых веществ, либо косвенным путем:

Устойчивость водородных соединений внутри групп сверху вниз ослабевает. В периодах слева направо усиливаются кислотные свойства водородных соединений: здесь наиболее выраженные кислотные свойства характерны для соответствующего галогенводорода.

Неметаллы образуют соединения с кислородом, подавляющее большинство которых (кроме OF 2) относится к кислотным оксидам. Оксиды, в которых неметаллический элемент находится в более низкой положительной степени окисления, проявляют как окислительные, так и восстановительные свойства:

Если в оксидах неметаллический элемент находится в высшей степени окисления, то он проявляет только (!) окислительные свойства:

Оксидам неметаллов соответствуют оксокислоты, свойства которых зависят от степени окисления характеристических атомов.

Если характеристический атом находится в низшей положительной степени окисления, то такие кислоты - слабые электролиты; для них характерны как окислительные, так и восстановительные свойства (например: HN0 2 ; H 2 S0 3 ; Н 3 Р0 3 ; НСЮ 2). Если же характеристический атом находится в состоянии наивысшей степени окисления, то такие кислоты являются

окислителями (например: HN0 3 ; H 2 S0 4 ; НСЮ 4).

Неметаллы одной группы, находясь в одинаковой степени окисления, образуют оксокислоты, сила которых убывает по мере увеличения заряда ядра. Так, в группе галогенов в ряду ПСЮ 3 - НВгО э - НЮ 3 наиболее слабой кислотой является НЮ 3 , наиболее сильной - НСЮ 3 .

Аналогичная зависимость прослеживается и для неметаллов 14-16-й групп.

В пределах периодов слева направо сила оксокислот возрастает:

Таким образом неметаллы взаимодействуют между собой, с металлами, кислотами, щелочами. Эти взаимодействия студентам предлагается разобрать в качестве самостоятельной работы.

Неметаллических элементов в периодической системе - 22, и они располагаются в 13-18-й группах.

На внешнем энергетическом уровне эти элементы содержат 4-8 электронов (исключение составляет бор, у которого три электрона).

Они характеризуются различными агрегатными состояниями - от газообразного до кристаллического. Для некоторых (углерод, фосфор, кислород, сера и др.) характерно явление аллотропии. Неметаллические элементы, находящиеся в твердом состоянии, являются преимущественно аморфными; для большинства из них характерны низкие значения теплопроводности и электрической проводимости. За исключением гелия и неона остальные неметаллы образуют оксиды и гидроксиды, большинство из которых проявляют кислотные свойства.

Как правило, они характеризуются высокой электроотрицательностью и являются активными окислителями.

Вопросы и задания

  • 1. Перечислите неметаллические элементы, укажите их положение в периодической системе элементов Д. И. Менделеева.
  • 2. Почему с увеличением номера периода число неметаллических элементов убывает? Ответ обоснуйте в соответствии со строением атома.
  • 3. На примере неметаллов второго периода объясните закономерности изменения строения наружных электронных оболочек.
  • 4. Какие закономерности наблюдаются в изменениях свойств неметаллов, относящихся к третьему периоду?
  • 5. Как изменяются окислительные свойства неметаллов внутри периода и внутри группы? Ответ подтвердите конкретными примерами.
  • 6. Известно, что внутри периода с увеличением заряда ядра возрастает высшая степень окисления. Исходя из этого выпишите формулы высших кислородных кислот неметаллов третьего периода и сопоставьте их окислительные свойства.
  • 7. Для неметаллов второго периода напишите формулы возможных оксидов и охарактеризуйте их свойства в виде соответствующих уравнений реакций.
  • 8. Перечислите неметаллы, которые в виде простых веществ представлены двухатомными молекулами. Объясните их строение и охарактеризуйте реакционную способность.
  • 9. Напишите формулы каждого из перечисленных ниже соединений и укажите степень окисления неметаллов - характеристических атомов: азотистая кислота, сульфид железа, хлорат калия, перйодат натрия, фосфат кальция, гидрокарбонат натрия.
  • 10. Существует ли взаимосвязь между электроотрицателыюстыо элемента и степенью окисления? Ответ обоснуйте на конкретных примерах.